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ABSTRACT

This work addresses the problem of blind image deblurring, having
one or more observations of the original image obtained through
unknown linear channels and corrupted by additive noise. We re-
sort to an iterative algorithm, belonging to the class of Bussgang
algorithms, based on alternating a linear and a nonlinear image
estimation stage. Specifically a novel nonlinear processing is per-
formed on the Radon Transform of the image edges. The effect
of the nonlinear processing is to thin the blurred image edges, and
to drive the overall blind restoration algorithm to a focused image.
The performance of the algorithm are assessed by experimental
results pertaining to restoration of blurred natural images.

1. INTRODUCTION

The problem of blind image deblurring, that is of recovering an
original image observed through one or more linear channels, has
been recently addressed in a number of papers [1], [2]. More-
over, different approaches resort to suitable image representation
domains. To cite a few, in [3] a wavelet based edge preserv-
ing regularization algorithm is presented, while in [4] the image
restoration is accomplished using simulated annealing on a suitably
restricted wavelet space. In [5] the authors make use of the Fourier
phase for image restoration [6] applying appropriate constraints in
the Radon domain.

In [7], the authors resort to an iterative algorithm, belonging
to the class of Bussgang algorithms, based on alternating a linear
and a nonlinear image estimation stage.

In this paper we investigate the design of the nonlinear pro-
cessing stage using the Radon Transform (RT) [8] of the image
edges. This choice is motivated by the fact that the RT of the
image edges well describes the structural image features and the
effect of blur, thus simplifying the nonlinearity design.

The herein discussed approach shares some common points
with [9], since it exploits a compact multiscale representation of
natural images.

2. OBSERVATION MODEL

The single-input multiple-output (SIMO) observation model of im-
ages is analytically characterized by:

yi[m,n] = (x∗hi)[m,n]+vi[m,n], (1)

for i=0, · · · ,M−1. The additive terms vi[m,n] represent realiza-
tions of mutually uncorrelated zero mean white Gaussian processes,
statistically independent of the image x[m,n].

The restored image x̂[m,n] is obtained from the observations
yi[m,n] by means of a bank of M linear FIR restoration filters
fi[m,n], i = 0, · · · ,M −1, whose support is (2P +1×2P +1),

namely:

x̂[m,n] =
M−1�
i=0

P�
t,u=−P

fi[t,u] yi[m− t,n−u] (2)

3. MULTICHANNEL BUSSGANG ALGORITHM

The scheme of the iterative multichannel Bussgang blind decon-
volution algorithm, as presented in [7], is depicted in Fig. 1. The
linear restoration stage is accomplished using a bank of FIR restora-
tion filters f (k)i [m,n], i= 0, · · ·,M−1, with finite support of size
(2P +1)× (2P +1), namely

x̂(k)[m,n] =
M−1�
i=0

(yi ∗f(k)i )[m,n]

=
M−1�
i=0

P�
t,u=−P

f
(k)
i [t,u] yi[m− t,n−u]

(3)

At each iteration a nonlinear estimate x̃(k)[m,n] = η(x̂(k)[m,n])

is then obtained from x̂(k)[m,n]. Then, the filter coefficients are
updated by solving the following linear system (normal equations)

M−1�
j=0

P�
t,u=−P

Ryjyi [r− t,s−u]f (k)j [t,u] =Rx̃(k−1)yi [r,s]

for i= 0, · · ·,M−1 and r,s=−P, · · ·,P . As outlined in [11, 12],
the iterative algorithm reaches an equilibrium point when

Rx̂(k)yi [r,s] = const ·Rx̃(k)yi [r,s]. (4)

4. BUSSGANG NONLINEARITY DESIGN USING THE
RADON TRANSFORM IN THE EDGE DOMAIN

The quality of the restored image obtained by means of the Buss-
gang algorithm heavily depends on the capability of the adopted
nonlinearity η(·) to restore specific characteristics of the original
image.

If the unknown image is well characterized using a proba-
bilistic description, as for text images, the nonlinearity η(·) can be
designed on the basis of a Bayesian criterion, as the “best” estimate
of x[m,n] given x̂(k)[m,n]. Often, the Minimum Mean Square
Error (MMSE) criterion is adopted. For natural images, we design
the nonlinearity η(·) after having represented the linear estimate1

1To simplify the notation, in the following we will drop the superscript
(k) referring to the k-th iteration of the deconvolution algorithm.
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Figure 1: General form of the Bussgang deconvolution algorithm.

x̂[m,n] in a transformed domain in which both the blur effect and
the original image structural characteristics are easily understood.

Let us consider the decomposition of the linear estimate
x̂[m,n] by means of a filter pair composed by the lowpass fil-
ter ψ(0)[m,n] and a bandpass filters ψ(1)[m,n] (see Fig.2) whose
impulse responses are


ψ(0)[m,n] = e−r

2[m,n]/σ20

ψ(1)[m,n] =
r[m,n]

σ1
e−r

2[m,n]/σ21 e−jθ[m,n]
(5)

where r[m,n]def
=
√
m2+n2, and θ[m,n]

def
= arctann/m are dis-

crete polar pixel coordinates. These filters belong to the class of
the Circular Harmonic Functions (CHF) [13], briefly summarized
in Appendix A, and possess the interesting characteristic of being
invertible by a suitable filter pair φ(0)[m,n],φ(1)[m,n].

The zero-order circular harmonic filter ψ(0)[m,n] extracts a
lowpass version x̂0[m,n] of the input image. By choosing the form
factor σ0 small enough, in the pass-band the blur transfer function
is approximately constant, and thus the blur effect on the lowpass
component results negligible. The first order circular harmonic fil-
ter ψ(1)[m,n] is a bandpass filter, with frequency selectivity set by
properly choosing the form factor σ1. The output of this filter is a
complex image x̂1[m,n], which will be referred to in the follow-
ing as “edge image”, whose magnitude is related to the presence of
edges and whose phase is proportional to their orientation. There-
fore a local analysis of the edge image can yield a classification
of each pixel as belonging either to edges or to textured regions or
uniform ones.

We resort to the analyze the edges present in x̂1[m,n] by means
of the local application of the bidimensional RT.

This transform has the property to map a straight line in a
point of the transformed domain, and therefore it yields a compact
and meaningful representation of the image edges. Since most
image edges are curves, this property applies only locally, that is
on regions small enough such that the piece of the interested line
appears straight. It is worth pointing out that our approach shares
the digital RT as a tool used in a a family of recently proposed
image transforms, the curvelet transforms [9], [10], which have
the capability to provide a sparse representation of both smooth
image functions and edges.
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Figure 2: Multiresolution nonlinear estimator η(·).

4.1 Local Radon Transform of the Edge Image
For a continuous image ξ(t1, t2) the RT is defined as

pξβ(s)
def
=

� ∞
−∞

ξ (cosβ ·s− sinβ ·u, sinβ ·s+cosβ ·u) du,

with −∞ < s <∞, β ∈ [0,π). It is well known that it can be
inverted by

ξ(t1, t2) =
1

4π2

� π
0

� ∞
−∞

P ξβ (jσ)e
jσ(σ cosβ t1+σ sinβ t2)|σ| dσdβ

where P ξβ (jσ) = F
�
pξβ(s)
1

is the Fourier transform of the RT.
If the image ξ(t1, t2) is frequency limited in a circle of diam-

eter DΩ, it can be reconstructed by the samples of its RT taken at
spatial sampling interval ∆s≤ 2π/DΩ,

pξβ [n] = p
ξ
β(s)|s=n·∆s n= 0,±1,±2, · · ·

Moreover, if the original image is approximately limited in the
spatial domain, i.e. it vanishes out of a circle of diameter Dt, the
sequence pξβ [n] has finite length N =1+Dt/∆s. In a similar
way, the RT can be sampled with respect to the angular parameter
β considering M different angles m∆β, m= 0, · · · ,M −1, with
sampling interval ∆β, namely

pξβm [n] = p
ξ
βm
(s)|s=n·∆s, βm=m·∆β

The angular interval ∆β can be chosen so as to assure that the
distance between points pξβ [n] and pξβ+∆β [n] lying on adjacent
diameters remains less or equal than the chosen spatial sampling
interval ∆s, that is

∆β · Dt
2
≤∆s

The above condition is satisfied when M ≥ π
2 ·N l 1.57 ·N .

To summarize, under the hypothesis that the original image is
approximately spatially bounded and bandwidth limited and that
N −1≥Dt ·DΩ/2π , and M ≥ π

2 ·N , the M,N samples

px1βm [n],m= 0, · · ·M −1,n= 0, · · ·N −1

of the RT px1β (s) allow the reconstruction of the image ξ(t1, t2),
and hence of any pixel of the selected region.

4.2 Nonlinearity Design in the Radon domain
The nonlinearity has to be designed according to the fact that each
pixel can belong to different regions: strong edges, weak edges,
and textured regions.

For significant image edges, characterized by relevant energy
concentrated in one direction, the nonlinearity can exploit the spa-
tial memory related to the edge structure. In this case, as above
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Figure 3: First column: details of a blurred test image in the edge
domain. Second column: corresponding restored details in the edge
domain.

discussed, we use the Radon transform of the edge image. Let us
consider a limited area of the edge image x̂1[m,n] interested by
an edge, and its RT px̂1βm [m,n], with m,n chosen as discussed in
4.1. The nonlinearity we present aims at focusing the RT both with
respect to m and n, and it is given by:

px̃1βm [n] = p
x̂1
βm
[n] ·fκf (n, βm) ·gκg (βm) (6)

where

f (n, βm) =
px̂1βm [n]−minn(p

x̂1
βm
[n])

maxn(p
x̂1
βm
[n])−minn(px̂1βm [n])

(7)

and

g (βm) =
maxn(p

x̂1
βm
[n])−minβk,n(px̂1βk [n])

maxβk,n(p
x̂1
βk
[n])−minβk,n(px̂1βk [n])

(8)

For each point of direction βm and index n, the nonlinearity (6)
weights the RT by two gain functions. The first function depends
on the distance between the actual value of the Radon transform
px̂1βm [n] and the maximum value competing to the same direction
βm. The second function depends on the distance between the
maximum value competing to the same direction βm and the global
maximum.

To depict the effect of the nonlinearity (6) in the edge domain,
in Fig.3 some details extracted from blurred versions of a test image
are shown along with their corresponding restored counterpart in
the edge domain. The edges result clearly enhanced and focused
by the processing.

If the image is locally low contrast or does not exhibit any
directional structure able to driven the nonlinearity, we use a spa-
tially zero memory nonlinearity acting pointwise on the edge image.
Since the edge image is almost zero in every pixel corresponding to
the interior of uniform regions, where small values are likely due
to noise, the nonlinearity should attenuate low magnitude values of
x̂1[m,n]. On the other hand, high magnitude values of x̂1[m,n],
possibly due the presence of structures, should be enhanced. A
pointwise nonlinearity performing the said operations is given in

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

α = 0.1 dB
α = 9 dB
α = 20 dB

Figure 4: Nonlinearity given by (9), employed for natural images
deblurring, parameterized with respect to the parameter α for γ =
0.5.

the following:

x̃1[m,n] = (1+1/α) · x̂1[m,n] ·g
iEEx̂1[m,n]EEJ

g(·) = 1+γ ·√1+α · exp
]
− (·)

2

2
· α

(1+1/α)

� (9)

The magnitude of (9) is plotted in Fig.4 for different values of
the parameter α. The nonlinearity (9) has been presented in [7],
where the analogy of this nonlinearity with the Bayesian estimator
of spiky images in Gaussian observation noise is discussed.

After the nonlinear estimate x̃1[m,n] has been computed, the es-
timate x̃[m,n] is obtained by reconstructing through the inverse
filter-bank φ(0)[m,n] and φ(1)[m,n], i.e. (see Fig.2):

x̃[m,n] =
Q
φ(0) ∗ x̂0

w
[m,n]+

Q
φ(1) ∗ x̃1

w
[m,n] (10)

5. EXPERIMENTAL RESULTS AND CONCLUSIONS

The images used in our experimentations have been blurred using
the blurring filters having the following impulse responses:

h1[m,n]=


0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0

 ; h2[m,n]=

0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

 ;

h3[m,n]=


0 0 0 0 0 0 0
0 0 0 0 0 0 0
0.5 0.86 0.95 1 0.95 0.86 0.5
0 0 0 0 0 0 0
0 0 0 0 0 0 0


In Fig.5 some details belonging to a test image are depicted.
The corresponding blurred observations, affected by additive white
Gaussian noise at SNR=20dB, obtained using the aforementioned
blurring filters are also shown as long as the deblurred images. In
Fig.6 the MSE, defined as

MSEdef
=

1

N2

N−1�
i,j=0

Q
x[i,j]− x̂[i,j]

w2
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is plotted vs. the iteration number at different SNR values for the
deblurred image.

It is worth noting that the deblurring algorithm furnishes im-
ages of improved visual quality, significantly reducing the distance,
in the mean square sense, from the original unblurred image.

In summary an algorithm for blind image restoration that it-
eratively performs a linear and a nonlinear processing is here de-
scribed. The nonlinear stage is based on a suitable nonlinear pro-
cessing designed in the Radon transformed domain that leads to a
sharp, focused image.

Figure 5: “F16” image. First column: details of the original im-
age. Second, third, and fourth column: blurred observations of the
original details. Fifth column: restored details. (SNR = 20 dB)

k

2 4 6 8 10 12 14

M
S

E

0.010

0.015

0.020

0.025 20 dB 
40 dB 

Figure 6: Mean Square Error versus the iteration number.

Appendix A. CIRCULAR HARMONIC FUNCTIONS

Referring to a continuous polar coordinate system, namely (r,θ),
the functions

ψ(n)(r,θ) =
w(r)

2πr
e−jnθ (A.1)

are known in literature as circular harmonic functions (CHFs) of
order n with radial profile hn(r)

def
=w(r)/2πr. The zero-order

CHF, obtained from (A.1) for n= 0, gives as output a real valued
image which is a lowpass version of the input image. In general,
the n− th order CHF is tuned to the fundamental harmonics of n-
fold angular symmetric patterns, corresponding to edges (n = 1),
lines (n= 2), forks (n= 3), crosses (n= 4) and so on.

For the application carried out in this paper, we have con-
sidered a discrete implementation of the following polar separable
continuous functions

ψ(n)(r,θ) = rne−r
2

e−jnθ (A.2)

with n= 0,1,2,3, · · ·, known as “marginal” Hermite filters.
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