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ABSTRACT 
The common methods for position determination of radio 
signal emitters (communications, radar) are based on meas-
uring a specified parameter of the signal such as Angle-of-
Arrival (AOA) or Time-of-Arrival (TOA). The measured 
parameters are then used to estimate the transmitter’s loca-
tion. Since the measurements are done at each station inde-
pendently, ignoring the constraint that the AOA/TOA esti-
mates at different stations correspond to the same location, it 
is a sub-optimal position determination method.  
We propose a technique that uses exactly the same data as 
the common AOA methods but the position determination is 
direct and can handle more co-channel signals than the 
common methods. Although there are many stray parame-
ters, only two-dimensional search is required for a planar 
geometry. The technique provides a natural solution to the 
measurements-sources association problem that is encoun-
tered in AOA based systems and outperforms the AOA 
methods for unknown as well as known signal waveforms. 

1. INTRODUCTION 

The problem of emitter location attracts much interest in the 
Signal-Processing, Communications, and Underwater-
Acoustics literature. Defence oriented location systems have 
been reported since world war I. Civilian systems are in use 
for the localization of cellular phone callers, spectrum moni-
toring and law enforcement. Positioning based on AOA or 
TOA and its derivatives (DTOA, EOTD) is used extensively 
in cellular phone localization [1], radar systems [2], and 
underwater acoustics [3, 4].  
In this correspondence we discuss a method that solves the 
localization problem using the data collected at all sensors at 
all base stations together, in contradiction to the traditional 
AOA/TOA approach that is composed of two separate steps: 
1) AOA/TOA independent estimates and 2) triangulation 
based on the results of the first step. Measuring AOA/TOA 
at each base station separately and independently is sub-
optimal approach since it ignores the constraint that the 
measurements must correspond to the same source position. 
Moreover, the base stations are geographically separated and 
therefore often the desired signal appears weak or absent in 
some of the base stations. Thus the system must ensure that 
all AOA/TOA measurements correspond to the same source. 
In the case of co-channel simultaneous sources, the localiza-

tion system confronts an association problem of deciding 
which of the multiple AOA/TOA estimates correspond to 
which source. 
The Direct Position Determination (DPD) method that we 
propose takes advantage of the rather simple propagation 
assumptions that are usually used for Radio Frequency (RF) 
signals. These assumptions are realistic and have been veri-
fied with real data. The proposed method may use both the 
array response at each station and the time of arrival at each 
station. We show that for a planar geometry of sources and 
base stations, a two-dimensional search is sufficient to local-
ize all sources. A side benefit of the DPD is its ability to 
determine the positions of more sources than the number of 
sensors at each base station in contrast to AOA. However, 
the DPD technique requires the transmission of the received 
signals (possibly sampled) to a central processing location, 
in contrast to AOA/TOA that require only the transmission 
of the measured parameters. 

2. PROBLEM FORMULATION 

Consider L base stations intercepting Q transmitted signals. 
Each station is equipped with an antenna array consisting of 
M elements. The bandwidth of the each signal is small com-
pared to the inverse of the propagation time over the array 
aperture. Denote the q-th transmitter’s position by qp . The 
complex envelopes of the signals observed by the -th base 
station array is given by  
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q q q q q
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t b s t t tτ
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= − − +∑r a p p n  (1) 

where ( )tr  is a time-dependent 1M × vector, qb  is an 
unknown complex scalar representing the channel attenua-
tion between the q-th transmitter and the -th base station, 

( )qa p is the -th array response to a signal transmitted 

from position qp , and ( ( )q qs t τ− p  is the q-th signal wave-

form, transmitted at time (0)
qt  and delayed by ( )qτ p .  The 

vector ( )tn represents noise and interference observed by 
the array.   
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The observed signal can be partitioned into K sections and 
each section can be Fourier transformed. The result of this 
process is  
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where ( , ), ( , ), ( , )qj k s j k j kr n are the Fourier coefficient 

corresponding to frequency jω  of the k-th section. Define 
the followings vectors and scalars, 
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Using (3) we get the matrix representation of (2), 

 
1 1

1

( , ) ( , ) ( , )

( ) ( , , ), ( , , )

( , ) ( , ), ( , )

Q Q

T

Q

j k j k j k

j j b j b

j k s j k s j k

= +

  

  

r A s n

A a p a p

s

 (4) 

Since ( , )j ks  is the same at all base stations, we can con-
catenate the observed vectors at all stations as follows 
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3. LOCATION ALGORITHM 

In this section we discuss potential location algorithms for 
the common case of unknown signal waveforms and for the 
less common case of uncorrelated known signal waveforms.  

3.1 Unknown Signals 
Assuming that the receivers do not know the signals a-priori 
as is the case in most of the applications. The Maximum 
Likelihood Estimator of the observations in (5) requires a 
multidimensional search over the unknown parameter space: 
{ }( , ), ,q qj k bs p , i.e. an overall of 2QJK+2(L-1)Q+2Q di-

mensions. In order to avoid the multidimensional search we 
use the MUSIC algorithm [5]. Note that 
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Following the MUSIC algorithm we propose the following 
cost function, 
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where ( )s jU  is a ML Q× matrix consisting of the eigen-
vectors of ( )jR  corresponding to the Q largest eigenvalues 
and p and b are variable vectors representing the unknown 
position and unknown attenuations. The minimum points of 
F(p,b) depend on all unknowns and therefore require only a 
2(L-1)+D dimensional search.  
In order to reduce this search we propose to represent 

( , , )ja p b as follows, 
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where LI stands for the L L× identity matrix, M1 stands for 

a 1M × column vector of ones, and ⊗  stands for the 
kronecker product. Substituting equation (8) in (7) yields 

 ( , ) ( ) ( ) ( ) ( )H H H H
s s

j

F j j j j
 

=  
 
∑p b b H Γ U U Γ Hb  (9) 

In order to facilitate a unique solution we assume that the 
norm of b is one. Hence, for any assumed position p the 
maximum of F(p,b) corresponds to the maximal eigenvalue 
of the matrix D(p) defined by, 

 ( ) ( ) ( )H H H
s s

j

j j
 
 
 
∑D p H Γ U U Γ H  (10) 

thus, equation (9) reduces to  

 [ ]max( ) ( )F λ=p D p  (11) 

where the right side of (11) denotes the largest eigenvalue of 
D(p). The maximization of (11) requires only a D-
dimensional search. Moreover, the dimensions of D(p) are 
L L×  which are usually rather small. 

3.2 Known Uncorrelated Signals 
In certain applications the transmitted waveforms are known 
to the location system. For example, in cellular systems syn-
chronization and training sequences are transmitted periodi-
cally and are known a-priori. Moreover, it is possible to 
detect the data sequence of a digitally modulated signal and 
then restore the complex signal envelope based on the 
known modulation scheme.  
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We follow the algebraic steps in [6]. Assume that the noise, 
( , )j kn , is circularly symmetric complex Gaussian random 

vector with zero-mean and second orders statistics given by, 

 { } { }( , ) ( , ) ; ( , ) ( , ) 0H T
ij kE i k j E i k jη δ δ= =n n I n n (12) 

We further assume that the signals are uncorrelated, i.e. 
( )jΛ  is diagonal. The log-likelihood function of the array 

output vectors, ( , )j kr , is proportional to 
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Define the following matrices 
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Substituting (14) in (13) it can be verified that minimizing 
1F  is equivalent to minimizing 
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Since we assumed that the signals are uncorrelated, ˆ ( )ss jR  is 

asymptotically diagonal and 2F  can be decoupled as 
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where ˆ( , , ), ( )q q qj ja p b a represent the q-th column of 

( )jA  and ˆ ( )jA , respectively. Using (8) in (16) yields  
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The vector qb that minimizes the cost function 3F  is  
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Replacing qb with ˆ
qb  in (17) we get a cost function that 

depends on p only. This cost function can be simplified by 

assuming that ( ) 1; , ,j j= ∀a p . Thus, it can be shown 
that minimizing (17) is equivalent to maximizing 
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where ( )ˆ ( )q ja is the -th sub-vector  of  ˆ ( )q ja . Note that 
(19) indicates that the cost function is in fact a sum of L dis-
tinct cost functions, each associated with a distinct base sta-
tion. This is the reason that DPD outperforms methods that 
maximize the cost function at each station independently. 

4. NUMERICAL RESULTS 

We performed Monte-Carlo simulations in order to compare 
the traditional AOA approach with DPD. We applied two 
different techniques to locate the transmitters: 1) AOA esti-
mation at each base station independently, 2) DPD accord-
ing to the algorithms described in the previous section. The 
performance evaluation is based on the RMS error given by 

 ( ) ( )2 2

1 1

1 1ˆ ˆRMS
N N

i t i t
i i

x x y y
N N= =

= − + −∑ ∑  (20) 

where ( , )t tx y  is the emitter location and ˆ ˆ( , )i ix y  is the i-th 
location estimate.  
Test Case 1: Consider 3 base-stations placed at co-ordinates, 
(2, -2), (2, 0), (2, 2) [Km] and two emitters placed at (0, 
+1.5) , (0, -1.5) [Km].  The signals are unknown to the re-
ceivers. Each base-station is equipped with a uniform linear 
array of only 3 antenna elements. The attenuation vector is 

[1, 0.8, 0.4]T=b . Each location determination is based on 
200 snapshots at a single frequency. The SNR is varied be-
tween 3 [dB] and 23 [dB] and we performed 100 experi-
ments at each SNR. The results for one of the sources are 
shown in Figure 1. As can be seen, DPD outperforms AOA 
at low SNR while both methods are equivalent at high SNR. 
Test Case 2: we kept the base stations at the same locations 
and used two emitters placed at (0, +Y), (0, -Y) [Km], 100 
snapshots and SNR=20 [dB]. The channel attenuation to all 
stations is equal. We changed Y from 0.2 [Km] to 1.2 [Km] 
and the results are plotted in Figure 2. As expected, the ac-
curacy of the traditional AOA is very sensitive to sources 
that are not well separated as opposed to the DPD method.  
Test Case 3: we kept the base stations at the same location 
and placed 3 transmitters at (0, 1.5), (0, -1.5), (-1, 0) [Km]. 
Each base station collects 1000 snapshots and the attenua-
tion is equal at all base stations. Since each base station is 
equipped with an array of 3 elements, traditional AOA 
based on MUSIC fails while DPD works fine as shown in 
Figure 3. 
Test Case 4: we used 4 base stations located at (-2, -2), (-2, 
+2), (2, -2), (2, +2) [Km] and a single source at (1, 1) [Km]. 
Each base station is equipped with a circular array of 5 ele-
ments. The waveforms are known. The number of snapshots 
is 1000. The attenuation to two base stations is 0 dB and for 
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the other two is –10 dB. The accuracy results are plotted in 
Figure 4. 

 

 

Figure 1: RMS error of DPD and AOA, Cramér-Rao Bound 
and Performance Analysis results for 3 base stations, two 
sources. 

 

 

Figure 2: RMS error of DPD and AOA, Cramér-Rao Bound 
and Performance Analysis results for 3 base stations, two 
sources with increasing separation. 

 

Figure 3: RMS error of DPD and AOA, Cramér-Rao Bound 
and Performance Analysis results for 3 base stations, 3 
sources. 

 

Figure 4: RMS error of DPD and traditional AOA for known 
waveforms. Four base stations each equipped with 5 element 
circular array. 
 

5. CONCLUSIONS 

We have proposed a direct position determination (DPD) 
technique for localizing multiple narrowband radio frequency 
sources. The technique can locate more sources than the tra-
ditional AOA approach. Moreover, DPD provides better ac-
curacy than traditional AOA and it does not encounter the 
association problem of independent AOA measurements at 
each base station. The proposed technique uses the MUSIC 
approach in order to reduce the complexity of the algorithm. 
However, DPD requires raw signal data to be transferred to a 
common processor. 
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