Nonlinear Speech Synthesis *

Stephen MeLaughlin
Signals and Systems Group,
Department of Electronics and Electrical Engineering,
University of Edinburgh, The King’s Buildings,
Edinburgh, EH9 3JL, Scotland, UK

Email : sml@ee.ed.ac.uk

Tel : (+44)-131-650-5578, Fax : (+44)-131-650-6554

ABSTRACT

This paper examines the how and the why of nonlin-
ear speech synthesis. It discusses why nonlinear speech
synthesis should be considered, reviews the recent his-
tory and describes in detail a variety of approaches to
the problem. It argues that while modern concatenative
speech synthesisers produce speech which is intelligible,
however they are very inflexible and often lack a hu-
man quality. The paper does not suggest that nonlinear
speech synthesisers are ready to replace conventional ap-
proaches, but rather that they offer some potential ad-
vantages but there is a considerable amount of research
still to be carried out.

1 Introduction

Speech synthesis is a complex task that aims to produce
naturally—sounding speech. While working systems that
produce intelligible speech have existed since the 1970’s,
the final aim of producing a synthesiser that is indistin-
guishable from a human speaker has still to be realised.
There remain a number of problems at all stages of the
process, including the actual generation of the speech
signal itself with the required intonation. This paper
is structured as follows, a brief review of conventional
linear based approaches is followed by a quick review of
nonlinearities which exist in speech generation. Then an
example of nonlinear techniques applied to epoch mark-
ing 1s presented followed by two sections on nonlinear
speech synthesis. Finally some conclusions are drawn.

2 Conventional Speech Synthesis Approaches

Conventionally the main approaches to speech synthesis
depend on the type of modelling used. This may be a
model of the speech organs themselves (articulatory syn-
thesis), a model derived from the speech signal (wave-
form synthesis), or alternatively the use of pre-recorded
segments extracted from a database and joined together
(concatenative synthesis).

Modelling the actual speech organs is an attractive
approach, since it can be regarded as being a model of
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the fundamental level of speech production. An accur-
ate articulatory model would allow all types of speech to
be synthesised in a natural manner, without having to
make many of the assumptions required by other tech-
niques (such as attempting to separate the source and
vocal tract parts out from one signal) [1-3]. Realistic
articulatory synthesis is an extremely complex process,
and the data required is not at all easy to collect. As
such, 1t has not to date found any commercial applica-
tion and is still more of a research tool.

Waveform synthesisers derive a model from the speech
signal as opposed to the speech organs. This approach
is derived from the linear source—filter theory of speech
production [4]. The simplest form of waveform synthesis
is based on linear prediction (LP) [5]. The resulting
quality is extremely poor for voiced speech, sounding
very robotic.

Formant synthesis uses a bank of filters, each of
which represents the contribution of one of the form-
ants. The best known formant synthesiser is the Klatt
synthesiser [6], which has been exploited commercially
as DECTalk. The synthesised speech quality is consid-
erably better than that of the LP method, but still lacks
naturalness, even when an advanced voice—source model
is used [7].

Concatenation methods involve joining together pre—
recorded units of speech which are extracted from a
database. It must also be possible to change the prosody
of the units, so as to impose the prosody required for the
phrase that is being generated. The concatenation tech-
nique provides the best quality synthesised speech avail-
able at present. It is used in a large number of commer-
cial systems, including British Telecomm’s Laureate [8]
and the AT&T Next—Gen system [9]. Although there is
a good degree of naturalness in the synthesised output,
it is still clearly distinguishable from real human speech,
and it may be that more sophisticated parametric mod-
els will eventually overtake it.

Techniques for time and pitch scaling of sounds held
in a database are also extremely important. Two main
techniques for time-scale and pitch modification in con-
catenative synthesis can be identified, each of which op-



erates on the speech signal in a different manner. The
pitch synchronous overlap add (PSOLA) [10] approach
is non—parametric as opposed to the harmonic method,
which actually decomposes the signal into explicit source
and vocal tract models. PSOLA is reported to give good
quality, natural-sounding synthetic speech for moderate
pitch and time modifications. Slowing down the speech
by a large factor (greater than two) does introduce arti-
facts due to the repetition of PSOLA bells. Some tonal
artifacts (e.g. whistling) also appear with large pitch
scaling, especially for higher pitch voices, such as female
speakers and children.

McAulay and Quatieri developed a speech genera-
tion model that is based on a glottal excitation signal
made up of a sum of sine waves [11]. They then used
this model to perform time-scale and pitch modifica-
tion. Starting with the assumption made in the linear
model of speech that the speech waveform z(t) is the
output generated by passing an excitation waveform e()
through a linear filter h(t), the excitation is defined as
a sum of sine waves of arbitrary amplitudes, frequencies
and phases. A limitation of all these techniques is that
they use the linear model of speech as a basis.

3 Nonlinearities in speech

There are known to be a number of nonlinear effects
in the speech production process. Firstly, it has been
accepted for some time that the vocal tract and the vo-
cal folds do not function independently of each other,
but that there is in fact some form of coupling between
them when the glottis is open [12] resulting in signi-
ficant changes in formant characteristics between open
and closed glottis cycles [13]. More controversially,
Teager and Teager [14] have claimed (based on phys-
ical measurements) that voiced sounds are characterised
by highly complex air flows in the vocal tract involving
jets and vortices, rather than well behaved laminar flow.
In addition, the vocal folds will themselves be respons-
ible for further nonlinear behaviour, since the muscle
and cartilage which comprise the larynx have nonlinear
stretching qualities. Such nonlinearities are routinely
included in attempts to model the physical process of
vocal fold vibration, which have focussed on two or more
mass models [2,3, 15], in which the movement of the vo-
cal folds is modelled by masses connected by springs,
with nonlinear coupling. Observations of the glottal
waveform have shown that this waveform can change
shape at different amplitudes [16] which would not be
possible in a strictly linear system where the waveform
shape is unaffected by amplitude changes.

In order to arrive at the simplified linear model, a
number of major assumptions are made:

e the vocal tract and speech source are uncoupled
(thus allowing source—filter separation);

e airflow through the vocal tract is laminar;

e the vocal folds vibrate in an exactly periodic man-
ner during voiced speech production;

e the configuration of the vocal tract will only change
slowly;

These imply a loss of information which means that
the full speech signal dynamics can never be properly
captured. These inadequacies can be seen in practice
in speech synthesis where, at the waveform generation
level, current systems tend to produce an output signal
that lacks naturalness. This is true even of concaten-
ation techniques which copy and modify actual speech
segments.

4 Poincare maps and epoch marking

The section discusses how nonlinear techniques can be
applied to pitch marking of continuous speech. We wish
to locate the instants in the time domain speech signal at
which the glottisis closed. A variety of existing methods
can be employed to locate the epochs. These are Abrupt
change detection [17], Maximum Likelihood epoch de-
tection [18] and Dynamic programming [19]. All of the
above techniques are sound and generally provide good

not be viewed as a direct competitor to the methods
outlined above. Rather it is an attempt to show the
practical application of ideas from nonlinear dynamical
theory to a real speech processing problem. The per-
formance in clean speech is comparable to many of the
techniques discussed above.

In nonlinear processing a d-dimensional system can
be reconstructed in an m-dimensional state space from
a single dimension time series by a process called em-
bedding. Takens’ theorem states that m > 2d+ 1 for an
adequate reconstruction [20], although in practice it is
often possible to reduce m. An alternative is the singu-
lar value decomposition (SVD) embedding [21], which
may be more attractive in real systems where noise is
an issue.

A Poincaré map is often used in the analysis of dy-
namical systems. It replaces the flow of an n—th or-
der continuous system with an (n— 1)-th order discrete
time map. Considering a three dimensional attractor
a Poincaré section slices through the flow of trajector-
ies and the resulting crossings form the Poincaré map.
Re—examining the attractor reconstructions of voiced
speech shown above, 1t is evident that these three dimen-
sional attractors can also be reduced to two dimensional
maps.! Additionally, these reconstructions are pitch—
synchronous, in that one revolution of the attractor is
equivalent to one pitch period. This has previously
been used for cyclostationary analysis and synchronisa-
tion [22]; here we examine its use for epoch marking.

1Strictly these attractor reconstructions are discrete time maps
and not continuous flows. However it is possible to construct a
flow vector between points and use this for the Poincaré section
calculation.
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Figure 1: Results for the voiced section of "came along”
from the Keele database for a female speaker. From top
to bottom: the signal; the epochs as calculated by the al-
gorithm; the laryngograph signal; the pitch contour (Hz)
resulting from the algorithm.

The basic processing steps required for a waveform of
N points are as follows:

1. Mark ygcr, a known GCI in the signal.

2. Perform an SVD embedding on the signal to gener-
ate the attractor reconstruction in 3D state space.

3. Calculate the flow vector, h, at the marked point
yGc on the attractor.

4. Detect crossings of the Poincaré section, X, at this
point in state space by signs changes of the scalar
product between h and the vector y; — ygcr for all
1 < i < N points.

5. Points on ¥ which are within the same portion of
the manifold as ygcr are the epochs.

When dealing with real speech signals a number of prac-
tical issues have to be considered. The input signal must
be treated on a frame-by—frame basis, within which the
speech is assumed stationary. Finding the correct inter-
section points on the Poincaré section is also a difficult
task due to the complicated structure of the attractor.
Two different data sets were used to test the perform-
ance of the algorithm, giving varying degrees of realistic
speech and hence difficulty.

1. Keele University pitch extraction database [23].
This database provides speech and laryngograph
data from 15 speakers reading phonetically bal-
anced sentences.

2. BT Labs continuous speech. 2 phrases, spoken by 4
speakers, were processed manually to extract a data
set of continuous voiced speech. Laryngograph data
was also available.

The signals were up—sampled to 22.05 kHz, the BT data
was originally sampled at 12 kHz and the Keele signals
at 20 kHz. All the signals had 16 bit resolution.

Fig. 1 shows the performance of the algorithm on a
voiced section taken from the phrase “a traveller came
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Figure 2: Results for the voiced section of "raining” from
the BT Labs database for a male speaker. From top
to bottom: the signal; the epochs as calculated by the
algorithm; the processed laryngograph signal; the pitch
contour (Hz) resulting from the algorithm.

along wrapped in a warm cloak”, spoken by a female
speaker. There is considerable change in the signal, and
hence in the attractor structure, in this example, yet
the epochs are sufficiently well located when compared
against the laryngograph signal.

In Fig. 2, which is a voiced section from the phrase
“see if it’s raining” spoken by a male speaker, the epochs
are well located for the first part of the signal, but some
slight loss of synchronisation can be seen in the latter
part.

5 Nonlinear Synthesis Approaches

5.1 Neural network synthesis background

Kubin and Birgmeier reported an attempt made to use
a RBF network approach to speech synthesis. They pro-
pose the use of a nonlinear oscillator, with no external
input and global feedback in order to perform the map-
ping

z(n) = A(x(n — 1)) (1)

where x(n— 1) is the delay vector with non—unit delays,
and A is the nonlinear mapping function [24].

The initial approach taken [25] used a Kalman—based
RBF network, which has all of the network parameters
trained by the extended Kalman filter algorithm. The
only parameter that must be specified is the number
of centres to use. This gives good prediction results,
but there are many problems with resynthesis. In par-
ticular, they report that extensive manual fine—tuning
of the parameters such as dimension, embedding delay
and number and initial positions of the centres are re-
quired. Even with this tuning, synthesis of some sounds
with complicated phase space reconstructions does not
work [24].

In order to overcome this problem, Kubin resorted
to a technique that uses all of the data points in the
training data frame as centres [24]. Although this gives
correct resynthesis, even allowing the resynthesis of con-
tinuous speech using a frame—adaptive approach, it is
unsatisfactory due to the very large number of varying



parameters, and cannot be seen as actually learning the
dynamics of the speech generating system.

Following their dynamical analysis of the Japanese
vowel /a/, Tokuda et al. constructed a feed—forward
neural network to perform synthesis [26]. Their struc-
ture has three layers, with five neurons in the input
layer, forty neurons in the hidden layer, and one in the
output layer. The time delay in the input delay vec-
tor is set at 7 = 3 and the weights are learnt by back
propagation. Using global feedback, they report success-
ful resynthesis of the Japanese vowel /a/. The signal is
noisy, but preserves natural human speech qualities. No
further results in terms of speech quality or resynthesis
of other vowels are given.

‘An alternative neural network approach was pro-
posed by Narashimhan et al. This involves separat-
ing the voiced source from the vocal tract contribution,
and then creating a nonlinear dynamical model of the
source [27]. This is achieved by first inverse filtering
the speech signal to obtain the linear prediction (LP)
residual. Next the residue waveform is low—pass filtered
at 1 kHz, then normalised to give a unit amplitude en-
velope. This processed signal i1s used as the training
data in a time delay neural network with global feed-
back. The NN structure reported is extremely complex,
consisting of a 30 tap delay line input and two hidden
layers of 15 and 10 sigmoid activation functions, with
the network training performed using back propagation
through time. Finally, the NN model is used in free—
running synthesis mode to recreate the voiced source.
This is applied to a LP filter in order to synthesise
speech. They show that the NN model successfully pre-
serves the jitter of the original excitation signal.

5.2 RBF network for synthesis

A well known nonlinear modelling approach is the ra-
dial basis function neural network. Tt is generally com-
posed of three layers, made up of an input layer of source
nodes, a nonlinear hidden layer and an output layer giv-
ing the network response. The hidden layer performs a
nonlinear transformation mapping the input space to a
new space, in which the problem can be better solved.
The output is the result of linearly combining the hidden
space, multiplying each hidden layer output by a weight
whose value is determined during the training process.

The general equation of an RBF network with an in-
put vector x and a single output is

P

F(x(n)) =D wig(llx = ell) (2)

ji=1

where there are P hidden units, each of which is
weighted by w;. The hidden units, ¢(||x — ¢;||), are ra-
dially symmetric functions about the point ¢;, called a
centre, in the hidden space, with ||.|| being the Euclidean
vector norm [28]. The actual choice of nonlinearity does

not appear to be crucial to the performance of the net-
work. There are two distinct strategies for training an
RBF network. The most common approach divides the
problem into two steps. Firstly the centre positions and
bandwidths are fixed using an unsupervised approach,
not dependent on the network output. Then the weights
are trained in a supervised manner so as to minimise an
error function.

Following from the work of Kubin et al., a nonlinear
oscillator structure is used. The RBF network is used
to approximate the underlying nonlinear dynamics of
a particular stationary voiced sound, by training it to
perform the prediction

ziy1 = F(xi) 3)
where x; = {&i,%(_7), -, T(i—(m-1)7)} 15 a vector of
previous inputs spaced by some delay 7 samples, and
F is a nonlinear mapping function. From a nonlin-
ear dynamical theory perspective, this can be viewed
as a time delay embedding of the speech signal into an
m~-dimensional state space to produce a state space re-
construction of the original d-dimensional system at-
tractor. The embedding dimension is chosen in accord-
ance with Takens’ embedding theorem [20] and the em-
bedding delay, 7, is chosen as the first minimum of the
average mutual information function [29]. The other
parameters that must be chosen are the bandwidth, the
number and position of the centres, and the length of
training data to be used. With these set, the determ-
ination of the weights is linear in the parameters and is
solved by minimising a sum of squares error function,
Eg(F), over the N samples of training data:

E(F) =

N | —

Z(i’i — z;)° (4)

where Z; is the network approximation of the actual
speech signal z;. Incorporating Equation 2 into the
above and differentiating with respect to the weights,
then setting the derivative equal to zero gives the least-
squares problem [30], which can be written in matrix
form as

(@7 ®)w’ = Tx (5)

where @ is an NxP matrix of the outputs of the centres;
x is the target vector of length N; and w is the P length
vector of weights. This can be solved by standard matrix
inversion techniques.

Two types of centre positioning strategy were con-
sidered:

1. Data subset. Centres are picked as points from
around the state space reconstruction. They are
chosen pseudo—-randomly, so as to give an approx-
imately uniform spacing of centres about the state
space reconstruction.



2. Hyper—lattice. An alternative, data independent
approach is to spread the centres uniformly over an
m~-dimensional hyper—lattice.

5.3 Synthesis

From analysis, an initial set of parameters with which to
attempt resynthesis were chosen. The parameters were
set at the following values:

Bandwidth = 0.8 for hyper—lattice, 0.5 for data sub-
set; Dimension = 7; Number of centres = 128; Hyper—
lattice size = 1.0; Training length = 1000;

For each vowel in the database, the weights were
learnt, with the centres either on a 7D hyper—lattice, or
chosen as a subset of the training data. The global feed-
back loop was then put in place to allow free—running
synthesis. The results gave varying degrees of success,
from constant (sometimes zero) outputs, through peri-
odic cycles not resembling the original speech signal and
noise—like signals, to extremely large spikes at irregular
intervals on otherwise correct waveforms [31].

These result implied that a large number of the map-
ping functions learnt by the network suffered from some
form of instability. This could have been due to a lack
of smoothness in the function, in which case regularisa-
tion theory was the ideal solution. Regularisation the-
ory applies some prior knowledge, or constraints, to the
mapping function to make a well-posed problem [32].

The selection of an appropriate value for the regu-
larisation parameter, A is done by the use of cross—
validation [30]. After choosing all the other network
parameters, these are held constant and A is varied. For
each value of A, the MSE on an unseen validation set
is calculated. The MSE curve should have a minimum
indicating the best value of A for generalisation. With
the regularisation parameter chosen by this method, the
7D resynthesis gave correct results for all of the signals
except KH /i/ and KH /u/ when using the data subset
method of centre selection. However, only two signals
(CA /i/ and MC /i/) were correctly resynthesised by the
hyper—lattice method. It was found that A needed to be
increased significantly to ensure correct resynthesis for
all the signals when the hyper—lattice was used. Achiev-
ing stable resynthesis inevitably comes at some cost.
By forcing smoothness onto the approximated function
there is the risk that some of the finer detail of the state
space reconstruction will be lost. Therefore, for best
results, A should be set at the smallest possible value
that allows stable resynthesis. The performance of the
regularised RBF network as a nonlinear speech synthes-
iser 18 now measured by examining the time and fre-
quency domains, as well as the dynamical properties.
In addition to comparing the output of the nonlinear
synthesiser to the original speech signal, the synthetic
speech from a traditional linear prediction synthesiser is
also considered. 1In this case, the LP filter coefficients
were found from the original vowel sound (analogous to
the training stage of the RBF network). The estim-
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Figure 4: Spectrums for examples of the vowel /u/, cor-
responding to the signals in Figure 3.

ate (Fs + 4) [33] was used to set the number of filter
taps to 26. Then, using the source—filter model, the
LP filter was excited by a Dirac pulse train to produce
the desired length LP synthesised signal. The distance
between Dirac pulses was set to be equal to the aver-
age pitch period of the original signal. In this way, the
three vowel sounds for each of the four speakers in the
database were synthesised.

Figure 3 shows the time domain waveforms for the ori-
ginal signal, the LP synthesised signal and the two RBF
synthesised signals, for the vowel /u/, speaker MC. Fig-
ure 4 shows the corresponding frequency domain plots
of the signals, and the spectrograms are shown in Fig-
ure 5. In these examples, the regularisation parameter
A was set at 0.01 for the hyper—lattice, and 0.005 for
the data subset. In the linear prediction case, the tech-
nique attempts to model the spectral features of the
original. Hence the reasonable match seen in the spec-
trum (although the high frequencies have been over-
emphasised), but the lack of resemblance in the time
domain. The RBF techniques, on the other hand, re-
semble the original in the time domain, since it is from
this that the state space reconstruction is formed, al-
though the spectral plots show the higher frequencies
have not been well modelled by this method. This is
because the networks have missed some of the very fine
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Figure 5: Wide-band spectrograms for examples of the
vowel /u/, corresponding to the signals in Figure 3.

variations of the original time domain waveform, which
may be due to the regularisation.

Further spectrogram examples for different vowels
and speakers follow the same pattern, with the size of A
being seen to influence the quality of the signal at high
frequencies.

5.4 Jitter and shimmer

Jitter and shimmer measurements were made on all
of the original and RBF synthesised waveforms, us-
ing epoch detection? over a 500 msec window. Jit-
ter is defined as the variation in length of individual
pitch periods and for normal, healthy speech should be
between 0.1 and 1% of the average pitch period [34].
Table 1 shows the results of the average pitch length
variation, expressed as a percentage of the average pitch
period length. Results for both centre placing tech-
niques are presented, with the jitter measurements of
the original speech data. The hyper—lattice synthesised
waveforms contain more jitter than the data subset sig-
nals, and both values are reasonable compared to the
original.

Shimmer results (the variations in energy each pitch
cycle) for the original and synthesised waveforms are
also displayed in Table 1. It can be seen that in general
there is considerably less shimmer on the synthesised
waveforms as compared to the original, which will de-
tract from the quality of the synthetic speech.

6 Incorporating Pitch into the Nonlinear Syn-
thesis Method

The approach adopted here is to model the vocal tract as
a forced nonlinear oscillator and to embed an observed
scalar time-series of a vowel with pitch information into
a higher dimensional space. This embedding, when car-
ried out correctly, will reconstruct the data onto a higher
dimensional surface which embodies the dynamics of the

2Using Entropic Laboratory’s ESPS Epoch function.

Data type MC CA Average

(male) | (female) | (female)
Hyper-lattice jitter (%) 0.470 1.14 0.697
Data subset jitter (%) 0.482 0.663 0.521
Original jitter (%) 0.690 0.685 0.742
Hyper-lattice shimmer (%) 1.00 1.33 0.922
Data subset shimmer (%) 0.694 7.65 2.34
Original shimmer (%) 4.21 7.06 5.17

Table 1: Percentage jitter and shimmer in original and
synthesised waveforms (hyper-lattice and data subset),
averaged over the vowels /i/, /a/ and /u/ for each

speaker, and as an average over the database.

vocal tract, see for example, [35, 36] for issues regarding
embedding).

Previous studies, discussed above, have successfully
modelled stationary (i.e. constant pitch) vowel sounds
using nonlinear methods, but these have very limited
use since the pitch cannot be modified to include pros-
ody information. The new approach described here re-
solves this problem by including pitch information in the
embedding. Specifically, a non-stationary vowel sound
is extracted from a database and, using standard pitch
extraction techniquesl, a pitch contour is calculated for
the time series so that each time domain sample has an
associated pitch value. In the present study measure-
ments of rising pitch vowel sounds, where the pitch rises
through the length of the time series, have been used as
the basis for modelling; see, for example, figure 1.

The time series is then embedded in an m-dimensional
space, along with the pitch contour, to form an (m+1)-
dimensional surface. A mixed embedding delay between
time samples (greater than unity) is used to capture
the variable time scales present in the vowel waveform.
The (m+1)-dimensional surface is modelled by a nearest
neighbour approach, which predicts the next time series
sample given a vector of previous time samples and a
pitch value (it is envisaged that more sophisticated mod-
elling techniques will be incorporated at a later date).

Synthesis is then performed by a modification of the
nonlinear oscillator approach [37], whereby the input
signal is removed and the delayed synthesiser output is
fed back to form the next input sample. In contrast
to previous techniques, the required pitch contour is
also passed into the model as an external forcing in-
put. Our results show that this method allows the vowel
sound to be generated correctly for arbitrary specified
pitch contours (within the input range of pitch values),
even though the training data is only made up of the
rising vowel time series and its associated pitch contour.
In addition, sounds of arbitrary duration can be read-
ily synthesised by simply running the oscillator for the
required length of time. Typical synthesis results are
shown. Tt can be seen that the sinusoidal pitch con-
tour of the synthesised sound is quite different from the
rising pitch profile of the measured data; the duration
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Figure 6: Synthesised vowel sounds together with desired
and measured pitch profile

of the synthesised data is also somewhat longer than
that of the measured data. The small offset evident
between desired and synthesised pitch contours is at-
tributed to minor calibration error. The initial results
presented here are encouraging. Indeed, perhaps some-
what surprisingly so. Specifically, good synthesis results
are obtained using a simple nearest neighbour embed-
ding model with only sparse data (typically around 1000
data points embedded in a space of dimension 17, cor-
responding to a very low density of around only 1.5 data
points per dimension). A limited measured pitch excit-
ation data: a simple rising pitch profile with a small
number of data points at each specific pitch value.

7 Conclusions

In view of these observations, it seems likely that
the data-based model of the vowel dynamics possesses
an important degree of structure, perhaps reflecting
physiological considerations, that requires further in-
vestigation. It is also clear that whilst encouraging there
is still some way to go in overcoming the limitations of
the approach. Tt is clear that Speech is a nonlinear pro-
cess and that if we are to achive the holy grail of truly
natural sounding synthetic speech that this must be ac-
counted for. It is also clear that nonlinear synthesis
techniques offer some potential to achive this although
a great deal of research work remains to be done.
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Figure 7: Synthesised vowel sounds together with desired
and measured pitch profiles
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