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ABSTRACT

The identifiability /separability of nonlinear instanta-
neous ICA models is considered. The identifiability
proof is constructed for the class of nonlinearities satis-
fying addition theorem. Addition theorem covers wide
variety of nonlinear mixing systems of engineering in-
terest. An algorithm for separating such nonlinear mix-
tures is presented and the feasibility of the approach is
demonstrated.

1 Introduction

In this paper, we address the problem of blind iden-
tifiability of nonlinear instantaneous ICA models. No
general identifiability conditions exist for such models.
Therefore, one needs to construct identifiability proofs
for different classes of nonlinearities and sources. Ob-
viously it is valuable to show identifiability to such
classes of nonlinear functions and source distributions
that cover wide variety of situations of engineering in-
terest. In this paper we concentrate on a class of nonlin-
earities satisfying so-called addition theorem that cov-
ers many nonlinearities of practical interest. The ad-
dition theorem has been previously [KLR73b] applied
to extend the Darmois-Skitovich theorem, which can be
viewed to lie in the heart of the identifiability of the
linear ICA model. Here we use the addition theorem
directly to the nonlinear ICA problem. The application
is two folded. First, it is shown that some natural re-
strictions on structure of nonlinear mixing necessarily
lead to models for which the addition theorem holds.
Second, the identifiability of these nonlinear models is
proved. Also a generic algorithm for blind separation
of such nonlinear ICA models is presented. Examples
demonstrating the feasibility of the approach are pro-
vided.

This paper is organized as follows. In Section 2, the
instantaneous ICA model and the blind separation prob-
lem are described in a general form. In Section 3, a class
of nonlinear ICA models is considered and an identifia-
bility proof is constructed. An algorithm for separating
such ICA models is presented. Finally, Section 4 demon-
strates the feasibility of the approach.

2 System model

A general instantaneous Independent Component Anal-
ysis (ICA) model with instantaneous mixing may be de-
scribed by the equation

X = F(S), (1)

where the sources [S1,Sa,...,Sm]T = S are real val-
ued independent non-degenerate random variables, F
is a measurable function R — RP, p > 2, and
X = [X1,X2,...,X,]T is the observed random vector.
The separation problem consists of finding a transform
G such that each component of Y = G(F(S)) can be
written as

Yi:fﬁi(sg(i)), 1=1,...,m, (2)

where o is a permutation on {1,2,...,m} and the func-
tion k; represents residual distortion. The function G
should be found using only the observed mixture X and
the assumption that the source variables are statistically
independent. In general,it can be shown that indepen-
dence cannot insure separation [HP99, TJ99], i.e. there
exists infinite number of functions G such that compo-
nents of G(X) are independent and are not of the form
(2). Thus it is necessary to restrict the model to contain
only variables S and functions F from certain classes of
variables and functions. Then we may say that the sep-
aration problem has a solution, or that the model (1) is
separable up to distortion x;, if the independence of the
components of Y = G(X) implies that Y is of the form

(2).

3 Identifiability of a class of Nonlinear ICA
models

The traditional linear ICA model is obtained from (1)
by restricting F to be linear, i.e. F(S) = AS + ¢ for
some p X m matrix A and p x 1 vector ¢ of constants.
Since independence of two random variables is preserved
by adding constants to both variables (implying neces-
sary location distortion to the model), it is easy to see
([KLR73a], Lemma 10.2.3) that without loss of general-
ity we can omit the constant and write the linear model



as
X = AS. (3)

This model has been extensively studied over the last
few years (see e.g. [HKOO1]). The original proof of sep-
arability for the case p = m was given in [Com94] and
some extensions were presented in [CL96]. The model is
found to be identifiable up to scaling and location distor-
tion if p > m and at most one of the source variables has
a Gaussian distribution. The cited proofs make an addi-
tional assumption that the sources have finite variances,
a condition that can apparently be removed [KLR73a].

As noted in Section 1, a general nonlinear ICA model
is not separable. It is therefore necessary to somehow re-
strict the function F and/or the source distributions to
certain classes in order to find the solution. We now con-
sider some natural restrictions on the type and structure
of the nonlinear operation. These conditions make per-
haps surprisingly the model separable as will be shown
in the end of this section.

Analogously to the linear model, a justified condi-
tion for the function is that the components of F are
scalable in the sense that they can be constructed from
lower dimensional functions. Thus it is natural to con-
sider measurable functions Fs(u,v) for the variables
on some (possibly infinite) interval (a, ) of the real
axis. Suppose further that the operation is closed, i.e.
Fo(u,v) € (o, B) and that the following conditions are
satisfied:

(i) Fa(u,v) is continuous separately both for v and v.

(ii) Fo is commutative, i.e. Fo(u,v) = Fa(v,u) for all
u,v € (a, B).

(ili) F» is associative, i.e. Fo(Fo(u,v),w) =
Fo(u, Fa(v,w)) for all u,v,w € (a, B).

(iv) There exist an identity element e € (a,f), i.e.
Fa(e,u) = u for each u € (a, B).

(v) For each u € (a, B) there exists an inverse element
ut € (a,B),ie. Fo(u,u~t) =e.

The conditions (ii) and (iii) reflect the idea that in
the model (1) the order of the mixing should be imma-
terial. The conditions (iv) and (v) describe the situation
that a signal value does not affect the other signals and
that a signal value cancels out the other signal value,
respectively. It is also noted that the conditions (ii)—(v)
make the function (operation) F» an Abelian (commu-
tative) group. The operation Fa(-,-) is from here on
interchangeably denoted by o for brevity.

Under the conditions stated above it is known from
the theory of functional equations [Acz66] that there
exists strictly monotonic continuous function f: R —
(a, B) such that

f@+y) =Fa(f(2), f(y)). (4)

Operator u o v Function f(z)

u—+v cx

uv e

U+ v+ uv e —1

uv c

u¢v T

ut+v+2uv cT
1—uv 1—cz

utv—2uv —cx
1—uv l—cz

uv — 1 —u2y/1 — 02 | cos(cx)
uv + vu? — 1v/v2 — 1 | cosh(cx)

utv
@ tan(cz)
uv—
vy cot(cx)
u+tv
m Ctanh(bx)
u+v—2uv cos(c) sin(bz)
1—uv sin(bz+c)
utv—1 1
2u+2v—2uv—1 1+tan(cz)
utv—2uv 1
1—2uv 1+cot(cx)
u+v—2uv cosh(c) sinh(bz)
1—uv sinh(bz+c)
u+v+2uv cosh(c) — sinh(bz)
1—wv sinh(bz+c)

Table 1: Examples [Acz66] of functions satisfying the
addition theorem over reals. All operations are defined
on the intervals where the corresponding function is con-
tinuous and strictly monotonic. Letters b and ¢ denote
arbitrary constants.

Such functions are said to satisfy the addition theorem
[Acz66]. Some examples are given in Table 1. Also the
converse [Acz66] to the theorem is true. Namely if any
continuous function satisfies (4) for some F», then nec-
essarily F, is a continuous group on some open interval.

Since f is strictly monotonic, it has the inverse func-
tion f~1. Using (4) we have

f@+a+-+a)=f@)o f(z)o---o f(x) & nx f(),

which gives a new operation x when n is an integer. This
is extended to all reals ¢ by defining

cx f(z) £ f(cx). (5)

In [KLR73Db] the o and x operators were used to con-
struct nonlinear forms to extend the Darmois-Skitovich
theorem for this nonlinear case. Here we use these op-
erators to define a class of nonlinear models. Assuming
the source variables S; take values in (o, 3), a nonlinear
ICA model in (1) can be written as

[F(D(S1,89,...,5m)
F)(S1,8s,...,5m)

| F(P) (S, 8,,...,5n)

'au*Sl oa12*520-~-oa1m*5m
a1 % 51 0 Q22 % S2 0+ ++ 0 Az * Sy

| Ap1 *Sloap2*520~-~oapm*5m



Theorem 1. Suppose the model (6) holds such that
random wvariables f~1(S;), ¢ = 1,2,...,m are non-
Gaussian, where f is the function defined by the operator
o, and that (column) vectors a; = [a1i, a2, - - -, api] ", 0 =
1,2,...,m, are linearly independent. Then the model
(6) is separable up to distortion k; = f(c;f~1(S;) +d;),
where ¢; and d; are constants, 1 = 1,2,...,m.

Proof. The equations (4) and (5) give
[f~1(X1)
fH(X2)
(%)
(a1 f71(S1) + a1 f~1(Ss) + -
a1 f7H(S1) + aga f71(S2) + -

+ almf_l(sm)
+ a2mf_1(5m)

Lap1 f7H(S1) + apgf_l(s;Q) NI

fH(S1)

a1 2 -+ ] r :(52) =Af7Y(S)

F1(Sm)
which is the linear ICA equation (3), and therefore has
the solution of the form Z; = ¢;f~'(S,;)) + di, @ =

1,2,...,m and o permutation, from which we get the
theorem by taking the mapping f. O

+ apm f7H(Sm)

The previous theorem indicates that the ICA model
(6) can be solved (up to the distortions of the above
theorem) with the generic algorithm:

1. For each component i, make the transformation
Y = f7H(Xy).

2. Solve the mixture Y = [V1,Yz,...,Y,]7 as linear
ICA problem to obtain linearly independent com-
ponents Z;, ¢t =1,...,p.

3. Transform each component Z; with f to obtain the
final solution.

There is another consequence of the addition the-
orem for nonlinear mixing. Namely, if f is any in-
vertible, continuous mapping defined on the entire real
axis, a (commutative) group operation can be defined
as Fa(u,v) = f(f~'(u) + f~'(v)) on the open set
f(R) = (o, B). Therefore, it is seen that in the post-
nonlinear model [TJ99],

Xi:fi(Zaiij), izl,...,p, (7)
7j=1

the component mixing operations can be also viewed as
a case of addition theorem mixing for variables Z; =
fi_l(Si), i = 1,...,m. However, it should be noted
that in the post-nonlinear mixing model the functions
fi and f;, i # j, can be different and moreover they are
assumed to be unknown.

4 Examples

As an example, consider the ICA model (1) with non-
linear mixing F : R® — R® such that each component
.7:(1) is given by a;1 * 51 O az;o * 52 O a;3 * 53, where
uowv = w/(u+w), i = 1,2,3. The model has the
addition theorem (4) solution f(z) =1/x. Thus the in-
verse mapping is given by f~!(z) = 1/, and the model
can be written explicitly as
5152853 .

Xi= 03519, + 4129155 + a1 95255 L23. (8
This model has nonlinear distortion given by s/(c+ds).

Suppose each component S;, i = 1,2,3, is standard
normal distributed. Since the inverse of the normal dis-
tribution is not normal, this mixture should be separa-
ble. In Matlab simulations, the coefficients were ran-
domly generated, and the linear part of the generic
algorithm was solved with the standard JADE algo-
rithm [Car]. Since the distortion is nonlinear, the di-
rect mean square error is not a good quantitative mea-
sure of the separation result. However, the distor-
tion of inverses (i.e. f~!(S;) and f=1(Y;)) is linear.
Therefore we measure the Signal-to-Interference-Ratio
(SIR(dB)= —10log;o(MSE)) between inverses, which
are further normalized to zero mean, unit variance, and
the permutation ambiguity is solved. The results are
compared with the results obtained by using JADE di-
rectly to the mixture, i.e. assuming that the data fol-
lows the linear model. The results are given in Figure 1,
where also the direct SIR values are given for the ref-
erence. The results are averaged over component signal
SIR values computed over 1000 Monte Carlo runs. It

Gaussian signals with inverse type mixing
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Figure 1: SIR values for different signal lengths in the
first example. The mixture is three standard normal
variables with the nonlinear wv/(u + v) mixing (8).

can be seen that the independent components are reli-
ably found.



Figure 3: Separation results. The impact of reflectivity
has been reduced making reliable image analysis possi-
ble. The component on the right is given in log-scale for
visualization purposes.

Another example considered is two dimensional mix-
ing, where u o v = uv, see Table 1. Thus the model can
be explicitly written as

X, = Segge =12 9)

The basic nature of a gray-level discrete image pixel
value f(z,y) at spatial coordinates (z,y) can be mod-
eled [GW92] as f(z,y) = i(z,y)r(z,y), where i(z,y) is
the amount of source light incident on the scene being
viewed (illumination) and r(x,y) is the amount of light
reflected by the objects in the scene (reflection). If ob-
ject surfaces in the image are specular, image analysis
and feature extraction may become unreliable. We used
the model (9) to get an enhanced picture of two images
taken from the same scene under two different lightning
conditions [Pau]. The original images are shown in Fig-
ure 2 and the separation results in Figure 3.

5 Conclusion

In this paper we constructed a proof of identifiabil-
ity to a class of nonlinear instantaneous ICA models.
These nonlinearities satisfy so-called addition theorem
that covers many nonlinearities of practical interest. An
algorithm for separating such nonlinear ICA models was
given. The feasibility of the approach was demonstrated

using two examples. Especially the image processing ex-
ample is of high practical interest. The performance and
applications of the method will be studied in detail in a
forthcoming paper.
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