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ABSTRACT

In this paper a new cluster based Maximum Likelihood Sequence
Equalizer is presented. The novelty of the algorithm consists of a
novel technique for the estimation of all the centers around which
the received observations are clustered. For a channel of order L
and a 2-PAM signaling scheme, only L of the cluster centers need to
be estimated, and the rest 2L�L clusters are subsequently obtained
via simple operations. This has a two fold advantage compared to
previously proposed cluster based algorithms. It reduces dramati-
cally the computational complexity as well as the required length of
the training sequence. The method is compared with the standard
LMS based MLSE and the Bayesian RBF equalizer. The results are
very favorable for the new technique, both from a computational
as well as performance point of view.

1 INTRODUCTION

One of the major problems encountered in the receiver design of
any communication system is that of Intersymbol Interference (ISI).
The part of the receiver used to mitigate ISI is the equalizer, and
the literature related to the task is very rich [1].

An optimal sequence equalizer is based on the Maximum Like-
lihood Sequence Estimation (MLSE) scheme [2] and is eÆciently
implemented via the Viterbi algorithm. The resulting equalizer is
known as the MLSE-VA equalizer or simply MLSE equalizer and
requires the channel impulse response (CIR) to be known. In prac-
tice, the LMS algorithm and its variants, are very attractive for the
channel estimation due to their structural simplicity and their low
computational requirements.

In the current paper, a novel MLSE equalizer is presented that
circumvents the problem of explicit CIR parametric modeling and
at the same time leads to substantial computational savings. The
proposed equalizer belongs to the family of Cluster-Based Sequence
Equalizers (CBSE) [3]-[6]. These equalizers utilize the clusters
formed by the received observations at the receiver front end. The
current paper addresses the two basic drawbacks associated with
the cluster-based equalizers, i.e., the high computational require-
ments and the need of long training sequences. The �rst problem is
solved by a new CBSE equalizer, called 1-D CBSE, that operates in
the one dimensional space leading to a complexity lower than that
of the standard MLSE equalizer, without any loss in performance.
The second one is addressed by a novel cluster center estimation
method, that exploits the symmetries that underly the generation
mechanism of the clusters formed by the received observations.

2 DESCRIPTION OF THE COMMUNICA-

TION SYSTEM AND CHANNEL MODEL

Figure 1 illustrates the adopted communication system, where xk is
the kth transmitted symbol taking values from the data set 1; � 1
, yk is the kth received observation corrupted by noise nk, and �yk
denotes the corresponding noiseless received sample.

The transmitted symbol sequence has been assumed to be in-
dependently and identically distributed (i.i.d.) and the communi-

Figure 1: Communication system model

cation channel can be modeled as a �nite impulse response �lter
spanning over L consecutive transmitted symbols, with transfer
function H(z). Thus the received signal sampled at t = kT , with
T being the transmission period of the symbols, is given by

yk =

L�1X
j=0

xk�jhj + nk = h
T
xk + nk � �yk + nk (1)

where nk is the white noise, hi are the coeÆcients of the dis-
crete equivalent of the channel impulse response (CIR) and h =
[h0; h1; � � � ; hL�1]

T is the corresponding vector. Moreover the vec-
tor xk = [xk; xk�1; � � � ; xk�L+1]

T of L successively transmitted
symbols, is associated with the noiseless observations �yk at any
time instant k.

3 SUMMARY OF THE MLSE

The task of the MLSE equalizer is to \choose" that sequence
of symbols (out of 2N ) X̂ = fx̂1; x̂2; � � � ; x̂k; � � � ; x̂Ng that max-
imizes the likelihood of the received sequence of observations
Y = fy1; y2; � � � ; yk; � � � ; yNg, i.e, maximizes the joint probability
P (Y jX). The MLSE equalizer, which is adopted here [2], comprises
a whitened matched �lter, followed by the Viterbi algorithm. The
Viterbi algorithm is eÆciently implemented by utilizing a trellis
diagram.

The states at any stage k of the trellis diagram are related to
the L� 1 most recent transmitted symbols, i.e.,

sk ! (xk�1; xk�2; � � � ; xk�L+1) (2)

The number of all possible (L�1)-symbol length sequences is 2L�1.
Thus each state corresponds to one of these 2L�1 possible vectors
that can be formed from L � 1 symbols. There are 2 allowable
transitions that emerge from a state sk and terminate at 2 di�erent
states sk+1, leading to a total of 2L transitions Bi; 1 � i �
2L. Thus each transition Bi at every stage k, is associated with
a sequence of L symbols, determined by the two successive states
associated with the speci�c transition.

Bi : (sk+1; sk) ! (xk; xk�1; xk�2; � � � ; xk�L+1) (3)

Each transition is associated with a cost, contributing to the total
cost of a path along the states. The cost of the ith transition, at
any stage k is given by the Euclidean distance metric

Di
k = jyk � h

T
xij

2 (4)

where xi is the L�element vector of the sequence of symbols
[xk; xk�1; � � � ; xk�L+1]

T , which is related to the ith transition Bi.



4 THE NEW CLUSTER BASED SEQUENCE

EQUALIZER 1-D CBSE

Considering that each transition is associated with a symbol vec-
tor xi and taking into account equations (1) and (4) we can infer
that each one of the transitions in the trellis diagram corresponds
to one of the 2L possible noiseless observations �yi = h

T
xi, which

are uniquely determined by the vector xi, 1 � i � 2L and the
channel impulse response h. Hence, the possible values that �yi
can take are nothing else than the points (centers) around which
the received samples (observations) yk are clustered, due to the
presence of the noise. Figure 2 shows the 1-dimensional plot of

Figure 2: Plot of the clusters formed by the received observations.
The stars denote the cluster centers, and the gray circles are the
corrupted by noise received observations.

the received observations for a 3-tap channel with transfer func-
tion H(z) = 1 � 0:5z�1 + 0:2z�2, when a white Gaussian noise,
corresponding to an SNR = 20dB, is also present. The notation
�yi
[xk xk�1 xk�2]

denotes the ith cluster center �yi, which is associ-

ated with the transmitted symbol sequence xi = [xk xk�1 xk�2].
The number and the position of the clusters are determined by
the length of the CIR and the spread by the power of the noise.
Figure 3 illustrates the connection between transitions and cluster

Figure 3: Trellis diagram for a two-tap channel case.

centers in the trellis diagram for a two tap channel. Indeed, each
transition de�nes the vector xi related to a speci�c cluster. This
observation frees us from the need to know the explicit channel
estimate h. hTxi in eq. (4), is nothing else but the corresponding
cluster center �yi, and the distance metric becomes:

Di
k = jyk � �yij2 (5)

The resulting technique is equivalent to the MLSE with respect to
performance, but it is computationally more eÆcient due to the fact
that the computation of the convolutions (eq. 4) are not required.

Any supervised clustering technique [7] can be used in order to
detect the centers (e.g., a simple averaging), based on the known
training sequence of symbols. We call the resulting sequence equal-
izer as the One-Dimensional Clustering Based Sequence Equalizer
(1-D CBSE).

5 A NOVEL CENTER ESTIMATION TECH-

NIQUE

The major drawback of the Cluster Based Sequence Equalizers,
as well as of symbol by symbol equalizers which also require clus-
ter center estimation, e.g., [9], [8] is that each cluster has to be
represented with a suÆcient number of observations in order to
achieve accurate estimates of the centers. Consequently, the re-
quired training sequence has to be relatively long. Sometimes, in
order to alleviate this problem, channel estimation is �rst perfomed
[9].

In this section we propose a novel method for the center detec-
tion, which does not require the direct estimation of all the clusters
but obtains the estimates of the 2L cluster centers utilizing the di-
rect estimates of only L properly selected centers.

Let us assume a general L-tap channel with impulse response
vector h = [h0; h1; � � � ; hm; � � � ; hL�1]

T . We de�ne as the tap con-
tribution cmx , associated with the mth tap hm, the quantity

cmx = xhm; x 2 S = f+1; � 1g (6)

In other words, this is the contribution of the hm tap in the convo-
lution sum in eq. (1). We can observe that cmx can take either of
2 di�erent values, depending on the value of the symbol x. We de-
note these values as cm1 ; c

m
�1 and is trivial to see that cm

�1 = �cm1 .
Using this notation, equation eq. (1) can be rewritten as

�yk =

L�1X
m=0

cmxk�m � �y[xk;xk�1;���;xk�L+1] (7)

where the notation �y[xk;xk�1;���;xk�L+1] is adopted to stress the

dependence of the respective cluster center on the transmitted
L�tuple [xk; xk�1; � � � ; xk�L+1]. Therefore the computation of all
the cluster centers requires the estimation of the L tap contribu-
tions. Next, we will show, via a series of examples, how we can
detect the tap contributions utilizing the estimates of only L prop-
erly selected centers.

Example 1: H(z) = 1, (L = 1). In this extreme case of a single
tap channel, the number of clusters that are formed is 21 = 2. The
pair of the cluster centers is illustrated in �gure 4. Actually, these

Figure 4: The circles de�ne the cluster centers which correspond
to the 1-tap channel H(z) = 1

centers coincide with the two possible values that the contribution
of the single tap h0 = 1 can take. Therefore, in this case the
contribution c01 coincides with the observed center �y

1. Once this has
been obtained, the other cluster center is obtained as: �y2 = �c01.
Thus, for L = 1, it suÆces to estimate only one cluster center.

Example 2: H(z) = 1 � 0:5z�1, (L = 2). In this example, a
second tap, h1 = �0:5, has been added to the 1-tap channel of the
�rst example. In this case, each one of the centers corresponds to
one of the possible 2-symbols combination [xk; xk�1] leading to the
formation of 22 = 4 centers, illustrated in �gure 5 by stars. The
circles in the �gure correspond to the \single tap" centers, i.e. �y[x],
x = 1 or x = �1. Observe that the clusters for the L = 2 system
are located symmetrically on either side of �y[x]. That is, one pair
is located around �y[1] and the other around �y[�1]. The distance of
each one of the four cluster centers from the respective �y[1] or �y[�1]

is equal to j c1x j. Exploring this structure of the cluster centers
one can �nd various ways to compute the tap contributions using



Figure 5: The stars de�ne the cluster centers which correspond
to the 2-tap channel H(z) = 1� 0:5z�1

only two (L = 2) properly selected cluster centers. For example, it
is easy to see that

c01 =
�y1 + �y2

2
; c11 =

�y1 � �y2

2

After the computation of the two contributions the detection of any
cluster center is straightforward, e.g., �y3

[�1 1]
= c0

�1+c
1
1 = �c01+c

1
1.

Example 3: H(z) = 1 � 0:5z�1 + 0:2z�2, (L = 3). In the same
manner, if a third tap is added, say, h2 = 0:2, 23 = 8 clusters are
formed with centers grouped in 4 pairs. Each pair is symmetrically
located around the 4 centers of the L = 2 system. The �nal struc-

Figure 6: The � de�necluster centers which correspond to the
3-tap channel H(z) = 1� 0:5z�1 + 0:2z�2

ture for this 3-tap channel example is shown in �gure 6. Following
similar arguments as before, one can see that it suÆces to estimate
only 3 (L = 3) centers in order to compute the tap contributions.

It turns out that in the general case of L taps, it suÆces to
estimate only L (out of 2L) properly selected centers.

5.1 COMPUTATION OF THE L CONTRIBU-

TIONS

Let us de�ne as basic center the cluster center Cbasic = �y[1;1;���;1],
and the associated symbol sequence basic sequence xbasic =
[1; 1; � � � ; 1]. In order to estimate the L tap contributions cm1 ; 0 �
m � L� 1 the estimation of the following centers are needed.

C0 = �y[�1;1;���;1]; C1 = �y[1;�1;���;1]; � � � ; CL�1 = �y[1;1;���;�1]

The simplest way to estimate a center Cm is by averaging the
corresponding observations i.e.,

Cm =
1

NCm

NCmX
k=1

y
(Cm)
k

; 0 � m � L� 1 (8)

where y
(Cm)
k

is the k�th observation belonging to Cm and NCm is
the number of observations associated with Cm.

The Cbasic can be computed based on the estimations of the L
centers Cm following the expression

Cbasic =

PL�1

m=0
Cm

L� 2
; L > 2: (9)

However, for best performance, is better not only to compute Cbasic
via equation 9, but also to directly estimate it like the other L
centers applying eq. 8. Then

Cbasic =

 PL�1

m=0
Cm

L� 2
+ ŷ[1;1;���;1]

!
=2: (10)

where ŷ[1;1;���;1] is the direct estimation of the basic center.
In order to estimate the required cluster centers directly we need

to construct a training sequence in such a way in order to repre-
sent the speci�c clusters with as many observations as possible. It
turns out, that a proper training sequence results by repeating the
following sequence of symbols successively:

[1; 1; � � � ; 1| {z }
L

;�1] (11)

The number of repetitions is constrained by the available train-
ing sequence length Ntr. For example for a 3-tap channel
and Ntr = 8 symbols, the adopted training sequence is the
[1; 1; 1;�1; 1; 1; 1;�1]. This sequence corresponds to observations,
which are cyclically distributed among the cluster centers Cm and
Cbasic, and leads to two observations per cluster.

It can now be shown that the tap-contributions can be obtained
by the L+ 1 centers

cm1+j = (Cbasic � Cm)=2; 0 � m � L� 1 (12)

6 COMPUTATIONAL COMPLEXITY RE-

QUIREMENTS AND PERFORMANCE RE-

SULTS

The computational complexity of the new cluster center estima-
tion method is shown in the upper part of the table 1, together
with that of the LMS algorithm, in terms of real multiplications
and additions. Ntr is the number of training symbols. It is very
important to point out that the number of multiplications and di-
visions required by the new method, is independent of the amount
of training symbols and it is much lower than that required by the
LMS algorithm. Divisions and multiplications are performed once
per training block.

The lower part of the table refers to the complexity of the Viterbi
algorithm. The more consuming part of the 1-D CBSE equalizer
is the computation of the Euclidean distance metric which is given
by equation eq. (5), which can be computed based on equation
eq. (7). The overall complexity of the equalizer in terms of real
operations is shown in table 1 together with the complexity of the
Bayesian DFE, and the complexity required by the standard form
of the MLSE equalizer based on explicit modeling. The delay used
for the Bayesian DFE is the optimum d = L� 1 [8].

In the �rst set of experiments, the convergence speed of the new
center estimation method was studied (in terms of the required
number of training symbols) and compared with that of the LMS
algorithm in various noise levels. In order to have a statistically
more representative result, we performed the experiments using
1000 di�erent 5-tap channels and the reported results are the ob-
tained mean values.

Figure 7 summarize the results for two SNR levels, 30 and 10
dB. The plotted quantity is the mean total deviation between the
25 true and the corresponding estimated cluster centers.

We can easily see that the new method exhibits faster conver-
gence compared to the LMS algorithm. This is clearer for the case
of high signal to noise ratio (SNR=30dB), where the new method
has converged in less than ten received samples, in contrast to the
LMS which needs approximately 20 (5L) samples. The training



Table 1: The computational complexity of the Bayesian-DFE, the
standard MLSE and the 1-D CBSE.

Figure 7: MSE between real and estimated cluster centers for
various training sequence lengths averaged over 1000 5-tap chan-
nels.

sequence for the LMS algorithm was a repeated CAZAC (Constant
Amplitude Zero Autocorrelation) sequence [11]. For other training
sequences, as it can be seen from �gure 7, (curves indicated by �),
the performance of the LMS algorithm was degraded substantially.

In the sequel, the symbol error rate (SER) performance of the
1-D CBSE, employing the new center estimation (CE) technique,
is treated and compared to the Bayesian-RBF employing both the
new CE method and the LMS algorithm for CIR estimation. The
transmission was realized in blocks, where each block comprised 200
data symbols together with a number of training symbols placed in
the front of each block. Figure 8 shows the performance curves of
the tested equalizers for the case of a 5-tap channel with transfer
function H(z) = 0:227 + 0:466z�1 + 0:688z�1 + 0:466z�1 + 0:227
when the training sequence is 10 and 30 symbols long. It is readily
seen than the proposed equalizer out-performs the Bayesian-DFE
not only when the center estimates are obtained via the channel
estimation, using the LMS algorithm, but also when utilizes the
cluster-centers obtained by the new (CE) method.

7 CONCLUSIONS

A novel cluster based MLSE technique has been presented. The
new method o�ers substantial computational savings compared to
previously proposed cluster based methods. The enhanced per-
formance of the new method compared with standard LMS based
MLSE and Bayesian RBF equalizers has been established via sim-
ulations.

Figure 8: Symbol error rate performance for 10 and 30 training
symbols per data block. The transfer function of the channel is
H(z) = 0:227 + 0:466z�1 + 0:688z�2 + 0:466z�3 + 0:227z�4
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