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ABSTRACT

We study the problem of tracking a Brownian phase
with linear drift at the output of a simple digital re-
ceiver. The classical Costas and Decision feedback loops
are compared to the particle implementation of the op-
timal nonlinear filter. The study of the asymptotic per-
formance of the loops allows to tune the loops in order
to minimize the mean square error. We then show that
the particle filter outperforms the loops in the acquisi-
tion step and in the behavior in front of cycle slips.

1 Phase tracking

We consider here the problem of phase synchronisation
in digital communications [1, 8]. We study the ideal case
for which the matched filtering have been performed;
the symbol synchronisation is perfect and intersymbol
interference is absent. The only problem to deal with is
the elimination of a residual phase. The output of the
digital receiver may then be written as

yp = age’tt 4y (1)

where sequence {ny } is a sequence of independent, iden-
tically distributed (i.i.d.) complex valued random vari-
ables, of power o2. This noise is furthermore assumed
to be Gaussian and circular (real and imaginary parts
are independent). The sequence ay is also an i.i.d. se-
quence and is the sequence of symbols that code the
emitted message. In this work, the digital modulation
used is a PSK modulation scheme. However, results pre-
sented in the paper are restricted to the Binary PSK:
each ag takes the value £1 with probability 1/2.

The residual phase & 1s the result of a bad synchronisa-
tion between the clocks of the emitter and the receiver.
We suppose that the oscillators differ from a constant
shift in frequency and from a small random jitter. The
phase can therefore be considered as a Brownian motion
with a linear drift, or

& = &Gt etw (2)

where wy 1s a Gaussian white noise with zero mean and
variance ¢2; the slope ¢ is furthermore unknown. We

finally assume that sequences ay, & and nj are statisti-
cally independent.

The problem considered here 1s the estimation of the
phase. Furthermore, we study the in-line case, and our
problem is thus a tracking problem. In the sequel, we
present three algorithms: two second order phase-locked
loops (PLL) and the particle implementation of the op-
timal filter (particle filter). Section 3 is dedicated to a
comparative study of the performance of the algorithms.
Asymptotic analysis for the PLLs is performed theoret-
ically, and this allows to put the loops in their optimal
asymptotic regime (minimization of the mean square er-
ror). We then compare numerically the loops to the
particle filter. In a second step, we perform numerical
investigation of the transient phase of the algorithms.

2 Algorithms

Phase-locked loops The PLLs studied here are
second-order adaptive algorithms or multistep algo-
rithms [2]. The loops are made of two coupled adap-
tive algorithms, one delivering the estimated phase, the

other the estimated slope. The generic form of these
PLLs is

ék = ék—1+5k—1+’}/1Xk
€ = €k—1+Y2Xk

The usual structure of adaptive algorithms clearly ap-
pears: correction of the last estimation by adding a term
proportional to a kind of error. In the case of BPSK
(ai, = £1), error terms write

ng — Im(yge—zi(ék—l+5k—l))

P = Im(ye= Ermrter-)Sign (Re(yke‘i(ék”*”‘l)))

and correspond respectively to the Costas loop and to
the Decision Feedback Loop. The nonlinearity in these
terms allows to remove the digital modulation; the resid-
ual phase is then compensated by the past estimate.
Therefore, the ys are more or less the sine of the phase
error.

Finally, v; and v are the stepsizes of the algorithms and
rule not only the transient behavior of the algorithms,



but also their asymptotic behavior. The choice of these
parameters is thus a crucial point, and is furthermore
linked to the performance of the loops.

Particle filter The problem to solve is the estimation
of the phase given observations and an a prior: on the
phase. We are thus in the framework of optimal filtering
of an hidden Markov model. The solution of optimal
filtering in a Bayesian context has been known since the
sixties [3]; it consists in a recursion equation for the a

posterioridensity p(€x |y, ) (Where yy. = (y1, ..., yk))-
This recursion

p(yr|éx) /P(€k|€k—1)]> (k—1lyr 1) d€h—r

p (yk|y1:k—1)

P (&klyrg) =
(3)

is cut into a prediction step that uses the state equation
of the phase, and a prediction step that take into account
the new observation through the likelihood. This fun-
damental result is unfortunately unusable in practice,
since the integrals in (3) are impossible to evaluate, as
well as estimators derived from the a posteriori density.
Numerical technique are therefore needed if one wants
to implement the optimal filter. Among numerical tech-
niques, Monte-Carlo simulation methods have seen an
increased interest in the last years. They lead to the
particle implementation of the optimal filter or particle
filter for short. For a precise presentation, we refer the
reader to [4, b, 6, 7].

The idea 1s to consider the a posteriori density as a dis-
tribution function of a gaz of particles. The density
is then replaced by an ensemble of particles (random
variables) of the gaz. The mean values of the density
can then be approximated by empiric means evaluated
with the particles. Of course, the dynamics of the par-
ticles 1s ruled out in order to respect the a posterior:
density. In particular, their moves follow the principle
of recursion (3) : predictive move using the a priori
—state equation—, correction step using the likelihood
—observation equation—. For algorithmic reasons, these
steps are coded differently. The prediction step is stored
in the trajectory of the particles (snapshots of the state
equation); the likelihood is stored in a weight attached
to the particle. Note that the weights are normalized so
that their sum over the ensemble of particles is 1.

The particle follow a first-order Markovian model; hence
they diffuse, and their likelihood (weight) must de-
creased with time. The particle filter thus degenerates
with time, since all the particle (but one which is the
most likely) see their weight going to zero. To overcome
this degeneracy, a resampling must be done regularly,
according to the weights the particules have. In this
step the least likely particles are likely to die whereas
the most likely particles are likely to proliferate.

The particles for the phase tracking problem have two

spatial dimensions : @ (i) = (x4 (i), z7 (7). The first di-
mension corresponds to the phase to estimate, and the
second dimension is dedicated to the slope £. The par-
ticle filter used here is then summed up by the following

algorithm:

1. initialization : N p

po,e) = U(@0,m) x

uniform weights wo( ) =

articles ag(7) ~
( 6maxa+5max) with

1
N
2. For k>1do Vi=1,... N :

xox(1) = (®or-1(7), zx(?))

(a) prediction:
where

@y (1) ~ p(€p|er-1(7))

(b) correction:

wi(i) = @1 (0)p(yk |2x (7))
" > wi ()
(c) If =), wx(i)log, wr(f) < 7 resample

according to (i), and then wy(7) =
1/N
(d) estimation:

N

& = Eleelyra]l = Y wn(i)ai(i)

i=1

The particle filter presented here is one of the simplest
(also known as the bootstrap filter [7]). Other more
elaborated versions (e.g. approximation of the optimal
importance function) have been tested on our problem:
the ameliorations provided by these versions where not
important enough compared to the great increase in
complexity to justify their use.

However some tricks are used that are not described in
the algorithm. Among them, the most important con-
cerns the resampling. The discrete probability defined
by the weights of the particle can be seen as an approxi-
mation of a continuous density which we have to sample
from. Since the approximation is very poor, the quality
of the sampling can be increased by using kernel esti-
mates [9]. The implementation can be done by adding
to the variable generated from the discrete law a small
perturbation drawn from the kernel used in the kernel
approximation. This i1s particularly important for the
constant parameter ¢, since the evolution of the state
equation ¢; = £ _1 1s fixed by the initial condition, and
do not allow a correct exploration of the state space. A
random perturbation of the trajectory allows the cor-
rect exploration. We thus add to ¢ a Gaussian variable
of variance 1/N at each resampling. This is not the opti-
mal way of doing (see [9]) but this works very efficiently.
Finally, note that the choice of the threshold 7 is not
a crucial point; if 5 is too large, resampling occurs



too often and results in an increase of the complex-
ity unbalanced by the low increase in performance; if
71 1s too small, performance are poor. We typically use

n=0.5log, N.
3 Performance

Asymptotic MSE Asymptotic performance of the
loops are difficult to obtain because of the nonlinearity
of the algorithms. Furthermore, they are approximately
known in the case of first order loops [12], but unknown
for the second-order case, to the best of our knowledge.
By considering the small errors approximation, correct
after convergence and under the assumption of small
noises, a linearization may be performed and allows to
calculate the asymptotic performance. The details of
the calculations are presented in [10], and we present
now the main conclusions that can be drawn.

It is easy to show that the loops are convergent in the
mean, and this for a wide range of the stepsizes (y1,y2).
The evaluation of the asymptotic mean square error
(MSE) as a function of y; and s is long and requires
the use of a symbolic calculator. The first conclusion is:
for a fixed ~1, the MSE is minimal when ~5 goes to zero.
This result is logical since v is the stepsize of an algo-
rithm that estimate a constant parameter. Secondly, for
a fixed 72, we show that the MSE is minimized for a no
zero value vF of the stepsize v;. In particular, it can be
shown for v2 — 0 that

. o teu /AT
no = 202 (¢ — 1) + ¢o2
N —02 + o024+ 202 + o
Mc =
' 202 + ol

where ¢ = 2f01/0" exp(—u?)du/+/m. In the sequel, the
loops are used with these values of the parameters, so
that the asymptotic MSE is minimal (note that 42 can-
not be chosen equal to 0; therefore it is set to a small
value, typically 1073.)

Figure 1 depicts the asymptotic minimal MSE evalu-
ated theoretically (dashed lines), numerically (circles
and squares) for the loops as a function of the obser-
vation noise power (20 snapshots of 5000 samples each
are used; we measured the mean square of the sinus of
the error by averaging from sample 3000 to sample 5000,
and then by averaging over snapshots). We also draw
the Cramér-Rao bound for the problem at hand (the
calculation has been performed using the recent result
of [11]). The behavior of the loops is very good since
they almost reach the bound.

Furthermore, we notice that the small error approxi-
mation leads to satisfactory results for a wide range of
observation noise power. This is especially true for the
DFL. In the case of the Costas loop, approximations are
poor as soon as 0, = 0.4 or 0.5. Finally, note the supe-
riority of the DFL on the Costas loop : the DFL will be
the only loop considered in the sequel.
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Figure 1: Asymptotic Minimum Mean Square Error and
Cramér-Rao bound for the phase. Circles and squares
correspond to an experimental evaluation of the perfor-
mance.
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Figure 2: Asymptotic Mean Square Error for the DFL
and for the particle filter.

Figure 2 shows the asymptotic MSE evaluated numeri-
cally for the DFL and for the particle filter (100 and 500
particles). This figure shows that the “optimal” config-
uration of the DFL 1s equivalent asymptotically to the
optimal filter.

Acquisition time The second step in assessing per-
formance consists in the study of the acquisition time or
convergence time. The theoretical study of the conver-
gence of the loops is difficult since the ODE (Ordinary
Differential Equation) associated to it [2] is nonlinear
and two-dimensional. We thus studied acquisition using
Monte-Carlo simulations.

The acquisition time may be defined as the smallest time
at which the algorithm enters and stays in a small in-
terval center around the true solution. The width of
this interval in our simulations has been set to 5% of
the value of the solution. We then evaluate the acquisi-
tion time for 2000 snapshots and calculate an histogram.
This has been performed for o,, = 0.1, ¢ = 0.5 and two
values of the observation noise power : o, = 0.5 and 1.
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Figure 3: Histograms of acquisition time, for two values
of the observation noise power.

Results are depicted in figure (3) and clearly show the
superiority of the particle filter. Indeed, acquisition time
is much lower for the particle filter than for the loops
(note however that for the difficult case o, = 1, the
number of particles is important). To understand the
superiority of particle filtering, recall that the loops are
optimized in order to minimize their asymptotic MSE.
But, it is well-known that constant stepsize algorithms
suffer from the “convergence speed-asymptotic MSE”
compromise. However, this compromise does not exist
for the optimal filter: it optimizes jointly its speed of
convergence and its asymptotic MSE.

Cycle slips The final point in the performance analy-
sis 18 the determination of the probability of cycle slips.
Recall that we estimate a phase, a parameter that is de-
fined modulo 27 /k, k being the number of states of the
PSK used (2 here). A cycle slip of the algorithm cor-
responds to a jump between two determinations of the
phase. These slips lead to catastrophic consequences in
the reception quality : for binary PSK, a slip of one cy-
cle transforms a £1 in a F1! The numerical study of
cycle slips remains to be done (for realistic conditions,
the numerical evaluation of the probability of cycle slips
requires incredible time of computer calculation), but
experience shows that the particle filter is much more
robust than the loops in front of cycle slips.

4 To conclude

To end this paper, we recall the main points of this
work. The loops can be placed in their optimal asymp-
totic configuration, and in that case, they are asymptot-
ically equivalent to the optimal filter implemented using
particle filtering. The superiority of the particle filter is
in the acquisition time and in its robustness in front of
cycle slips. But, the price to get this superiority is of
course the complexity of the algorithm. But we can bet

that future chips will be able to support that complexity.
A possibility to get simpler algorithms is to jointly use
the particle filtering concept and adaptive algorithms:
we have tried to run 10 DFLs in parallel, each one issuing
from a different initial condition, and choosing at each
time the more likely loop. The results are very efficient
and almost equivalent to the particle filter.

Finally, note that we work on the introduction of abrupt
changes in the model. An abrupt change can easily be
handled by the particle filter by using Poisson processes
for example. This is more difficult in the case of adaptive
algorithms since it requires the coupling of the loops and
sequential algorithms for detecting abrupt changes.
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