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ABSTRACT

This paper presents a particle filtering strategy in order
to estimate the state of Jump Markov Systems (JMS).
These processes are often met in signal communications,
when the Bayesian model changes with time. Our algo-
rithm takes advantage of the structure of the process.

1 Introduction

Many estimation problems arising in communications
can be cast in the following form. A unique dynamic
model represents the signal of interest {xt} (t ≥ 0 and
xt ∈ Rnx), which is not observed but statistically re-
lated to the observations {yt} (t ≥ 1 and yt ∈ Rny ).
More formally the process is typically described with a
Markov transition density p (xt|x0:t−1) = f (xt|xt−1),
where, for a set of variables lt, we denote la:b ,
{la, la+1, . . . , lb}. The observations y1:t are usually as-
sumed to be independent conditional upon the signal
process {xt}, and marginally distributed according to
p (yt|x0:t) = g (yt|xt). One is then interested in esti-
mating the sequence of posterior densities p (x0:t| y1:t)
and typically their marginals p (xt| y1:t). This so-called
optimal filtering problem generally does not admit a
closed-form solution, and one usually resorts to parti-
cle filtering techniques [1].

The problem addressed in this paper is that of the de-
velopment of efficient particle filtering techniques to per-
form on-line detection and estimation for a very impor-
tant class of dynamical systems, named Jump Markov
Systems (JMS) or Markov Switching State Space Mod-
els. JMS are a class of models that extends significantly
the models described above and, as we shall see, specific
particle filtering methods can be developed to perform
optimal estimation.

1.1 Jump Markov Systems
1.1.1 Statistical Model
Let {rt} be a stationary, finite, discrete, first order ho-
mogeneous Markov chain taking its values in a set S,
with transition probabilities πij , Pr{rt+1 = j|rt =
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i}, (i, j ∈ S). We define s the finite number of elements
of S. Now consider a family of s2 densities {fij (x′|x)}
where x ∈ Rnx and x′ ∈ Rnx′ , and define the state tran-
sition conditional densities,

p (xt|x1:t−1, r1:t) = frt−1rt (xt|xt−1) . (1)

The initial state x0 is distributed according to a dis-
tribution h. Note that the dimension, or nature, of xt
might be a function of the sequence {rt}, but we do not
make this dependence explicit in order to alleviate no-
tation. Neither the process {rt} nor {xt} are observed.
Instead, we observe {yt} where

p (yt|x0:t, r1:t, y1:t−1) = grt (yt| y1:t−1, xt) , (2)

with yt ∈ Rnyt (the number of observations can vary
over time). It is possible to add exogenous variables {ut}
in the equations, i.e. {fij} and {gj} can also depend on
ut, but we omit them to simplify notation.
Example 1. Variable length channel. Consider a chan-
nel ht of length Lt that may change with time. The
observed signal yt is the baseband output of the chan-
nel corrupted by zero-mean Gaussian additive noise nt
of variance σ2

t :
yt = hTt st + nt

where st is the sequence of symbols. The objective is
to estimate on-line the channel parameters as well as
st. In this example, the discrete state rt consists of the
symbols st and Lt, and the process xt includes ht and
σ2
t .

Example 2. Variable number of users in CDMA. In the
context of CDMA where the number Kt of users evolves
over time, the Markov chain state rt consists of Kt as
well as the symbols sk,t (note that k = 1, . . . ,Kt) and
the process xt consists of the coefficients of the channel,
and the noise parameter σ2

t .

1.1.2 Estimation Objectives
The aim of optimal filtering is to estimate sequen-
tially in time the unknown “hidden” states {xt, rt}
and more precisely the series of posterior distributions
p (x0:t, r1:t| y1:t). Their marginals, and in particular the
filtering densities p (xt, rt| y1:t), are of interest in prac-
tice. A simple application of Bayes’ rule allows for an
easy formulation of the recursion that updates the pos-
terior distributions:

p (x0:t−1, r1:t−1| y1:t−1)
grt (yt|y1:t−1,xt)frt−1rt (xt|xt−1)

p(yt|y1:t−1)/πrt−1rt
.
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There is no closed form solution to this re-
cursion and for state estimates of the form∫ ∑

r1:t
φ (x0:t, r1:t) p (dx0:t, r1:t| y1:t) , which include the

Minimum Mean Square Estimate (MMSE) of the state,
E [xt| y1:t] and its covariance for example. For the sake
of simplicity in notation, finite sums will be replaced
further on by integrals whenever it is convenient.

1.2 Resolution and Organization of the Paper
We propose here to approximate p (x0:t, r1:t| y1:t) using
particle filtering methods. The key idea of particle fil-
tering is to use an adaptive stochastic grid approxima-
tion of the posterior distribution of the state vector with
N � 1 weighted particles (values of the grid) evolving
randomly in time according to a simulation-based rule;
that is the density is approximated by a weighted mix-
ture of points,

p (dx0:t, r1:t| y1:t) ≈
N∑
i=1

w
(i)
t δ

x
(i)
0:t

(dx0:t) I{r(i)
1:t

} (r1:t) ,

(3)∑N
i=1 w

(i)
t = 1, w(i)

t ≥ 0, so that for example

E [φ (x0:t, r1:t)| y1:t] ≈
N∑
i=1

w
(i)
t φ

(
x

(i)
0:t, r

(i)
1:t

)
.

We will futher denote δx,r (dx, r) = I{r} (r) δx (dx). The
adaptive algorithm is designed such that the concentra-
tion of particles in a given region of the state space, say
A, represents the probability of A under the posterior
distribution, i.e.

∫
A
p (x0:t, r1:t| y1:t) dx0:tdr1:t. There-

fore computational efforts focus on different zones of
the state space according to their importance, resulting
in efficient algorithms. The particles evolve with time
in a series of growing spaces, and can either give birth
to offspring particles or die, depending on their ability
to represent the different characteristics of interest of
the posterior distributions, which are dictated by the
observation process and the dynamics of the underly-
ing system. The art of particle filtering consists mainly
of the way the particles are updated and propagated
through time. In particular it is extremely important to
guide the exploration of these particles through the se-
ries of state spaces using any available information (e.g.
the observations y1:t) or salient feature of the underly-
ing process (e.g. conditional linearity). It is thus no
surprise if most efforts in the field have been devoted
to these latter aspects. We propose here to develop a
generic approach in order to design efficient particle fil-
tering techniques adapted to the class of JMS described
earlier. Our approach is an original combination of sev-
eral methods that have been recently proposed in the
literature, mainly the Auxiliary Particle Filter (APF)
[4] and a suboptimal deterministic filtering methods,
the Unscented Kalman Filter (UKF), which is a par-
ticular instance of the Unscented Transform (UT) [2].
This methodology has been successfully applied to, e.g.,

nonstationary signal detection and estimation [5], and
can be applied as well to JMS in communications. In
the next section, we briefly review the basic principles
of particle filtering techniques and detail our generic al-
gorithm adapted to JMS. Conclusions are drawn in Sec-
tion 3.

2 Particle Filtering for JMS

2.1 Sequential Importance Sampling and Re-
sampling

We briefly describe here how to apply the Sequential Im-
portance Sampling Resampling (SISR) method in order
to approximately sample from p (x0:t, r1:t| y1:t); see [1]
for further details. At time t− 1, assume we have, say,
N weighted particles {x(i)

0:t−1, r
(i)
1:t−1} associated to the

weights {w(i)
t−1} that represent p (dx0:t−1, r1:t−1| y1:t−1).

We want to obtain N particles {x(i)
0:t, r

(i)
1:t} distributed

according to p (x0:t, r1:t| y1:t). At time t, we extend
each particle x

(i)
0:t−1, r

(i)
1:t−1 by sampling x̃

(i)
t , r̃

(i)
t ac-

cording to a conditional distribution qt to obtain N

new particles {x̃(i)
0:t, r̃

(i)
1:t} where x̃(i)

0:t , (x(i)
0:t−1, x̃

(i)
t ) and

r̃
(i)
1:t , (r(i)

1:t−1, r̃
(i)
t ). To correct for the discrepancy

between the distribution of each particle x̃
(i)
0:t, r̃

(i)
1:t and

p(x0:t, r1:t| y1:t), we use importance sampling so that
p(x0:t, r1:t| y1:t) is approximated by the empirical dis-
tribution

p̂N (dx0:t, r1:t| y1:t) =
N∑
i=1

w
(i)
t δ

x̃
(i)
0:t,r̃

(i)
1:t

(dx0:t, r1:t) , (4)

where the importance weights w(i)
t are equal to

w
(i)
t−1

g
r̃
(i)
t

(
yt|y1:t−1,x̃

(i)
t

)
f
r̃
(i)
t−1r̃

(i)
t

(
x̃

(i)
t

∣∣∣x̃(i)
t−1

)
π
r̃
(i)
t−1r̃

(i)
t

qt
(
x̃

(i)
t ,r̃

(i)
t

∣∣∣x̃(i)
0:t−1,r̃

(i)
1:t−1,y1:t

) . (5)

The performance of the algorithm depends on the im-
portance density qt. The “optimal” importance density,
that is the density minimizing the conditional variance
of the weights conditional upon y1:t−1, is proportional
to [1]

grt (yt| y1:t−1, xt) frt (xt|xt−1)πrt−1rt ,

and the associated importance weight are proportional
to wt−1 p (yt| y1:t−1, xt−1, rt−1). This scenario is ref-
ered to as “full adaption” in [4]. Finally, one obtains N
particles {x(i)

0:t, r
(i)
1:t} approximately distributed accord-

ing to p (x0:t, r1:t| y1:t) by resampling/selection from the
weighted empirical distribution given in Eq. (4). There
are several resampling procedures available in the liter-
ature. We adopt here the stratified sampling scheme [1].
This “optimal” importance sampling case deserves spe-
cial attention. Indeed, the importance weights wt is pro-
portional to p (yt|xt−1, rt−1, y1:t−1), the predictive like-
lihood, do not actually depend on {xt, rt}. This means
that resampling/selection can be performed before ex-
tending trajectories, thus selecting the most promising
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trajectories before extension. However, in most practi-
cal cases, it is impossible to use the “optimal” impor-
tance sampling density as the predictive likelihoods of
particles do not admit a closed form expression. How-
ever this scenario motivates an alternative particle fil-
tering method known as APF [4], see Section 3, where
one analytically approximates the predictive likelihoods,
or its behaviour, whenever necessary.

2.2 Strategies for Efficient Particle Filtering
2.2.1 Auxiliary Particle Filter
The idea behind APF is, at time t, to extend ex-
isting trajectories {x(i)

0:t−1, r
(i)
1:t−1} that are the most

promising, in the sense that their predictive likelihoods
p(yt|y1:t−1, x

(i)
t−1, r

(i)
t−1) are large. However the analytical

computation of these predictive likelihoods might prove
to be intractable and approximation is needed. Recall
that p(yt|y1:t−1, x

(i)
t−1, r

(i)
t−1) is equal to∑

rt∈S
π
r
(i)
t−1rt

∫
grt (yt| y1:t−1, xt) fr(i)

t−1rt

(
xt|x(i)

t−1

)
dxt.

In [4], the authors propose simple approximations
of the integrals with grt(yt|y1:t−1, ζ(x(i)

t−1, rt)), where
ζ(x(i)

t−1, rt) is the mode or mean of f
r
(i)
t−1rt

(xt|x(i)
t−1).

In many applications, especially if grt(yt|y1:t−1, xt)
varies significantly over the significant regions of
f
r
(i)
t−1rt

(xt|x̃(i)
t−1), then the approximation of the predic-

tive likelihood can be very poor and lead to performance
far below that of the SISR algorithm. Indeed, one ends
up biasing the exploration of the space towards uninter-
esting regions. It is thus fundamental to be able to ap-
proximate properly the predictive likelihood. An obvi-
ous solution would consist of using a second-stage Monte
Carlo method for each particle. It is however too compu-
tationally intensive and introduces further Monte Carlo
variation. We propose here to approximate this integral
by ψrt(x

(i)
t−1, r

(i)
t−1), a deterministic mapping/integration

technique described in the next subsection (we omit the
observations y1:t in ψrt(·) to simplify notation). Then,
an estimate of the desired quantity is

p̂(yt|y1:t−1, x
(i)
t−1, r

(i)
t−1) =

∑
rt∈S

π
r
(i)
t−1rt

ψrt(x
(i)
t−1, r

(i)
t−1).

The SISR extends each particle x
(i)
0:t−1, r

(i)
1:t−1 by sam-

pling x̃(i)
t , r̃

(i)
t according to a conditional distribution qt

to obtain {x(i)
0:t−1, x̃

(i)
t } and {r(i)

1:t−1, r̃
(i)
t }, then the asso-

ciated weight w(i)
t can be rewritten as follows

w
(i)
t−1p̂

(
yt| y1:t−1, x

(i)
t−1, r

(i)
t−1

)
×

g
r̃
(i)
t

(
yt|y1:t−1,x̃

(i)
t

)
f
r
(i)
t−1r̃

(i)
t

(
x̃

(i)
t

∣∣∣x(i)
t−1

)
π
r
(i)
t−1r̃

(i)
t

p̂
(
yt|y1:t−1,x

(i)
t−1,r

(i)
t−1

)
qt
(
x̃

(i)
t ,r̃

(i)
t

∣∣∣x(i)
0:t−1,r

(i)
1:t−1,y1:t

) .
The interest of this decomposition is that the first
term, which is independent of r̃(i)

t , x̃
(i)
t , mimicks the

weight of the “full adaption” scenario described ear-
lier. It therefore suggests the possibility of resam-
pling {x(i)

0:t−1, r
(i)
1:t−1} according to the weights λ

(i)
t ∝

w
(i)
t−1p̂(yt|y1:t−1, x

(i)
t−1, r

(i)
t−1) in order to obtain N parti-

cles {x̃(i)
0:t−1, r̃

(i)
1:t−1} which are then approximately sam-

pled from a distribution close to p(x0:t−1, r1:t−1|y1:t).
We then extend each particle by sampling x̃

(i)
t , r̃

(i)
t ac-

cording to a conditional distribution qt. Contrary to the
full adaption case, it is however necessary to reweight
the particles by

w
(i)
t ∝

g
r̃
(i)
t

(
yt|y1:t−1,x̃

(i)
t

)
f
r̃
(i)
t−1r̃

(i)
t

(
x̃

(i)
t

∣∣∣x̃(i)
t−1

)
π
r̃
(i)
t−1r̃

(i)
t

p̂
(
yt|y1:t−1,x̃

(i)
t−1,r̃

(i)
t−1

)
qt
(
x̃

(i)
t ,r̃

(i)
t

∣∣∣x̃(i)
0:t−1,r̃

(i)
1:t−1,y1:t

) ,
as the samples {x̃(i)

0:t−1, r̃
(i)
1:t−1} are no longer distributed

according to p(x0:t−1, r1:t−1|y1:t) (even asN →∞). The
problem of constructing an efficient deterministic map-
ping ψr for our problem is the subject of the following
subsection.

2.2.2 The Unscented Transform
The Unscented Kalman Filter (UKF) is an alternative
to the Extended Kalman Filter (EKF) which possesses
many advantages. Both approaches are motivated by
the fact that in most cases a single dynamic model, such
as that of Subsection 1.1, can alternatively be repre-
sented in the following manner

xt = ϕ (xt−1, vt) , yt = γ (xt, εt) , (6)

where {vt} and {εt} are typically mutually indepen-
dent zero-mean i.i.d. sequences, ϕ and γ are non-
linearities (similarly we will introduce ϕij and γij for
JMS). Both the EKF and UKF rely on approximations
of the system (6), but are of different nature. Never-
theless, for both scenarios the result of such approxima-
tions is that the series of predictive and filtering den-
sities {p(xt|y1:t−1)} and {p(xt|y1:t)} are replaced with
series of Gaussian distributions {N (xt;mt|t−1, Pt|t−1)}
and {N (xt;mt|t, Pt|t)}. Such approximations allow, in
principle, for the application of the Kalman filter recur-
sions in order to compute mt|t−1, Pt|t−1 from mt−1|t−1,
Pt−1|t−1 (this makes use of the evolution equation) and
mt|t, Pt|t frommt|t−1, Pt|t−1 and the observation yt (this
makes use of the observation equation). The EKF re-
lies on linearizations of the evolution and observation
equations (6), followed with a direct application of the
Kalman recursions on the first and second order mo-
ments. The solution adopted by the UKF is a sec-
ond order truncation of the statistics of the posterior
distributions at hand, followed by the Kalman recur-
sions. More precisely, assume that a set of n points
{x(i)

t−1}, the “sigma points” [2], possess the correct mean
equal to xt−1|t−1 and covariance Pt−1|t−1. Then the
mean and sample autocovariance of the set {ϕ(x(i)

t−1, 0)}
should be a good approximation of xt|t−1 and Pt|t−1

respectively. Similarly the mean and autocovariance
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of {γ(ϕ(x(i)
t−1, 0), 0)} should lead to reasonable approx-

imations of xt|t−1 , E( γ(ϕ (xt−1, vt) , εt)| y1:t−1) and
cov(yt|y1:t−1), which are required for the Kalman fil-
ter recursion. Following the same principle the crossco-
variance cov(xt, yt|y1:t−1) can also be computed. Given
these quantities it is then possible to take into account
the new observation yt, and calculate xt|t and Pt|t with
the Kalman filter. Given values for xt|t and Pt|t, various
methods have been proposed in order to generate a new
set {x(i)

t } [2].

2.2.3 Algorithm
Based on the elements presented above, it is possible to
propose the following generic particle filtering algorithm
for JMS.

At time t = 0, Step 0: Initialization

• For i = 1, ..., N sample x
(i)
0 ∼ p (x0) and set the weights

w
(i)
0 = 1/N .

At time t ≥ 1,
Step 1: Auxiliary variable resampling step

• For i = 1, ..., N , compute λ
(i)
t as1

λ
(i)
t ∝ w

(i)
t−1

∑
rt∈S

π
r
(i)
t−1rt

ψrt

(
x

(i)
t−1, r

(i)
t−1

)
,

N∑
i=1

λ
(i)
t = 1,

(7)

where ψrt

(
x

(i)
t−1, r

(i)
t−1

)
are computed using an unscented

approximation:

ψrt

(
x

(i)
t−1, r

(i)
t−1

)
=

1

n

n∑
i=1

grt

(
yt|y1:t−1, ϕr(i)t−1rt

(x
(i)
t−1)

)

The same sigma points {x(i)
t−1} are used to compute

mt|t (rt) , Pt|t (rt) for all rt in S.

• Multiply/Discard particles
{
x

(i)
0:t−1, r

(i)
1:t−1

}
and the

associated statistics
{
ψrt

(
x

(i)
t−1, r

(i)
t−1

)
,m

(i)

t|t (rt) ,

P
(i)

t|t (rt) ; rt ∈ S
}

with respect to high/low im-

portance weights λ
(i)
t to obtain N particles{

x̃
(i)
0:t−1, r̃

(i)
1:t−1

}
and the associated statistics{

ψrt

(
x̃

(i)
t−1, r̃

(i)
t−1

)
, m̃

(i)

t|t (rt) , P̃
(i)

t|t (rt) ; rt ∈ S
}

.

Step 2: Importance sampling step

• For i = 1, ..., N , sample

r̃
(i)
t ∼ q

(
rt| y1:t, x̃

(i)
0:t−1, r̃

(i)
0:t−1

)
∝ π

r
(i)
t−1rt

ψrt

(
x̃

(i)
t−1, r̃

(i)
t−1

)
.

• For i = 1, ..., N , extend the trajectories with2

x̃
(i)
t ∼ N

(
x; m̃

(i)

t|t

(
r̃

(i)
t

)
, P̃

(i)

t|t

(
r̃

(i)
t

))
.

1For t=1, πrt−1,rt in Eq. (7) should be replaced with the sta-
tionary distribution of the discrete Markov chain.

2Any other distribution, such as a heavy tailed distribution
(e.g. a t−distribution) could also be used.

• Compute the importance weights as w
(i)
t ∝

g
r̃
(i)
t

(
yt|x̃(i)

t

)
f
r̃
(i)
t−1r̃

(i)
t

(
x̃

(i)
t

∣∣∣ x̃(i)
t−1

)
ψ
r̃
(i)
t

(
x̃

(i)
t−1, r̃

(i)
t−1

)
N
(
x̃

(i)
t ; m̃

(i)

t|t

(
r̃

(i)
t

)
, P̃

(i)

t|t

(
r̃

(i)
t

)) .
• Rename the particles {x̃(i)

t , r̃
(i)
t−1} into {x(i)

t , r
(i)
t−1}

2.2.4 Discussion
The combination of the APF together with the UKF
ensures good statistical properties of the proposed al-
gorithm, as it tends to approximate the “full adaption”
scenario of [4]. However we would like here to stress
on its computational efficiency, as some quantities are
computed once, but used twice in Step 1 and Step 2.

The efficiency of this algorithm for JMS is mostly a
consequence of efficient sampling of the discrete state
r̃

(i)
t according to an estimate of the predicted likelihood

of each state rt ∈ S (this is a consequence of the joint
use of APF and UKF). This yields better efficiency than
sampling from e.g. the prior distribution π

r̃
(i)
t−1rt

. In the

stationary case (no jumps), the algorithm is still very
efficient for two reasons: First, the APF step avoids
sampling unlikely particles that would not contribute
significantly to the approximation (and thus are wasted
because the number of particles is fixed). Second, the
UKF yields an importance distribution which consists
of a locally Gaussian approximation of the actual target
distribution.

3 Conclusion

In this paper we develop efficient particle filtering tech-
niques especially tailored for Jump Markov systems.
The efficiency of our approach has already been demon-
strated in [5] for the estimation and detection of time-
varying autoregressive models with unknown and vari-
able number of poles.
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