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ABSTRACT

Our contributions in this paper are twofold. We first an-
alyze the stability of a differential blind source separa-
tion method for underdetermined convolutive mixtures
that we proposed elsewhere. This shows that the adap-
tation gains of this method should be selected depend-
ing on the signs of the differential powers of the sources
in order to control its stability. As these signs are un-
known in a blind context, we then develop a method for
deriving them from the observed mixed signals.

1 INTRODUCTION

Blind source separation (BSS) methods aim at restoring
a set of N, source signals z;(n) from a set of N, observed
signals y;(n), which are mixtures of these source signals
[1]. Only a few authors have investigated the under-
determined case, i.e. when N, < Ny (see e.g. ref. in
[2]). We proposed in [2] a general differential BSS con-
cept, which makes it possible to derive various practical
approaches for this case. We defined such an approach
intended for convolutive mixtures in [3]. After summa-
rizing its principles, we here analyze its stability. This
leads us to introduce a new method for deriving statis-
tical parameters of the source signals from the observed
signals, in order to control the stability of the considered
BSS approach in practical situations.

2 CONSIDERED BSS METHOD

We consider two observed signals y; (n) and y2(n), which
are convolutive mixtures of an arbitrary number of un-
known source signals z1(n) to zn, (n), i.e:

N,
Vi) =Y Ay()X;(x),  Vie{lL2}. ()

All source signals are supposedly centered for simplic-
ity and uncorrelated. Sources z1(n) and z2(n) are as-
sumed to be ”long-term non-stationary”, whereas x3(n)
to zn, (n) are ”long-term stationary”, as defined in [2]-
[3]. All sources are ”short-term stationary”. The mixing
filters A;;(2) are requested to be M*"-order MA, strictly
causal and such that A;;(2) =1 and Asy(z) = 1.
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Figure 1: Separating system based on a direct structure.

The method that we proposed in [3] to process such
signals uses the structure shown in Fig. 1. Its two M-
order MA strictly causal filters C;;(z) are adapted so as
to fulfill the following criterion:

DRui‘uJ‘ (n1,m2,0,k) = 0,i #j € {172}7k € [17M]' (2)

This criterion is based on the ”differential correlation
function”, that we defined in [3] as:

DRyw(n1,n2,l1,l2) = Ryw(ne —li,n2 —1a)
~Row(n1 —l1,n1 —12),(3)

where Ryy(mi,m2) = E{v(mi)w(msz)} denotes the
standard correlation of any couple of centered signals,
ny1 and ny are two reference times and l; and I, are
two lags. This criterion leads to a stochastic algorithm
which updates the k" coefficient of C;;(z) according to:

cij(n+1,k) = cij(n, k) + pi[ui(na)u;(na — k)
—ui(n1)uj(ng — k)],
i #je{1,2},ke1,M]. (4)

It performs a single sweep, indexed by n, over the data.
Each step of this sweep involves two points in the data
time series, corresponding to the indices nq and ns (e.g.
with ny = n). The difference between these indices is
typically kept constant and ”long”, as defined in [3].
By using the differential statistics of the signals, this
adaptation scheme is only sensitive to the ”long-term



non-stationary” sources, i.e. z1(n) and z(n). It thus
aims at adapting the filters of the BSS system so as to
reach the partial separating state [3] associated to z1(n)
and z2(n), i.e. the state when each of these ”useful
sources” only appears in one of the outputs of the BSS
system (together with some residual contributions of the
"noise sources” z3(n) to zn,(n)). We proved in [3] that
(2) is actually met at this partial separating state. This
state is therefore an equilibrium point of the proposed
algorithm. This equilibrium point must be stable in
addition. The current paper first aims at investigating
in which conditions this requirement is met.

3 STABILITY ANALYSIS

The Ordinary Differential Equation (ODE) method [4]
makes it possible to analyze the local asymptotic behav-
ior of adaptive systems whose updating algorithm reads
in vector form:

0n+1 = an + H(ana £n+1)7 (5)

where 6,,, H(0,,&,+1) and &,11 are the column vectors
resp. composed of: i) the adaptive parameters of the
system, which define its state, ii) the updating terms
for the parameters contained in 6,,, and iii) the signal
values required to define the above updating terms.

Stability is then analyzed for stationary sources by
approximating the discrete-time recurrence (5) by the
continuous-time differential system

@ _ Jim B [H (0, &nt1)]s (6)

dt

where Eyl[.] denotes the mathematical expectation with
respect to the probability law of the vector &,4+1 for a
given vector 6. This differential system is locally stable
in the vicinity of an equilibrium point 6* if and only if
(iff) the associated tangent linear system:

de

— = J(@*)(0 - 0" 7

= J(07)(6-0") 7
is stable, i.e. iff all the eigenvalues of J(6*) have nega-
tive real parts. For any state 6, J(6) denotes the corre-
sponding Jacobian matrix of the system, i.e. the matrix
composed of the partial derivatives

O(Eg[H (9, &nt1)]
gy = i 2B OL)ID)

where Eg[H(0,£n41)]9 is the 4** component of
Eg[H (6, &n41)] and 01) is the jt* component of 6.

We first have to apply this ODE approach to a slightly
extended version of the classical decorrelation approach
intended for 2 mixtures of only 2 sources (see [3]), where
we introduce two independent adaptation gains p; and
uo resp. for adapting the filters Ci2(2) and C2;(2), i.e:

cij(n+1,k) = cij(n, k) + piui(n)uj(n — k)
i#je{1,2),kel, M. (9)

This extended rule falls in the class of algorithms defined
by (5) and corresponds to:

071 = [012(71, 1)7 s 7612(”’7 M)J C21(n7 1)7 LR c21(n7 M)]T

(10)
and H(0,,&,+1) and &,41 derived accordingly from (5)
and (9). The corresponding Jacobian matrix J(6%) at
the separating state §° may then be derived from (10)
and the associated H(0,,&,+1) and &,41 by means of
(8). It has a complex expression, which does not allow
one to easily derive its eigenvalues. It gets simpler when:
i) the coeflicients of the mixing filters A15(2) and Ay (2)
are very small and ii) the sources are temporally white
(at order 2), i.e:

Re;(m)=0 ifm#0 (11)

where correlation functions R, (.) have a single argu-
ment in this part of the discussion, as the sources are
supposedly stationary. The powers or variances R, (0)
of these centered sources are denoted P, hereafter.
J(6%) then consists of four simple sub-matrices, i.e:

S\ ~u _NlngIM 0
67 = ( 0 —p2 Py I ) (12)

where Iy, is the Mt"-order identity matrix. Although
these calculations only concern the (extended) classi-
cal algorithm, we presented them because they are a
required first step of our analysis, which has not been
reported in the literature to our knowledge. This also
yields the following stability condition for the classical
algorithm. The matrix J(0°) obtained in (12) is diag-
onal and its eigenvalues are —u1P;, and —uaP,,. The
separating state is a stable equilibrium point for this
BSS algorithm iff these eigenvalues are negative. As the
source signal powers P,, and P, are always positive,
this stability condition reads:

pr >0 and  po > 0. (13)

This is the reason why the classical algorithm uses
pr = p2 =p>0.

The original algorithm (4) studied in this paper also
falls in the class of adaptation rules defined by (5).
Moreover, it is related in a simple linear way to the
algorithm (9) that we just analyzed: its function value
H(0,,&n+1) is the difference between the two values,
resp. at times ny and ng, of the function H(6,,&,41)
corresponding to the algorithm (9). Moreover, the ODE
approach itself is also linear with respect to H (0, &n+1)-
Therefore, when applying this approach to the proposed
algorithm (4), the expressions obtained in the succes-
sive steps of this analysis are straighforwardly derived
from those obtained above for the classical algorithm
(9): the previous expressions are replaced by the dif-
ference of their values between times ny and n,. Espe-
cially, the eigenvalues of the Jacobian matrix here be-
come — 3 DP,, (n1,ns) and —pusDP;, (ny, ns), where we



define the differential power of any signal v(n) for times
ny and ng as:

DPy(n1,n2) = Ry(na,n2) — Ry(n1,n1). (14)

The considered differential algorithm is then locally sta-
ble at the partial separating state iff:

w1 DPyy(n1,n2) >0 and peDPy, (n1,n2) > 0. (15)

The differential powers cannot be removed from this
condition, as they may be positive or negative, depend-
ing on the considered source signals. This should be con-
trasted with their classical, i.e. non-differential, coun-
terparts which appeared in the classical approach and
which are always positive. The signs of the adaptation
gains p1 and po should therefore be selected accord-
ing to the signs of the differential powers of the use-
ful source signals (and, for the sake of simplicity, both
adaptation gains may have the same absolute value, i.e:
|ti| = |p2| = > 0). However, the latter signs are
unknown in a blind context ! A method for estimating
them should therefore be developed for the proposed
BSS approach to be really applicable. We solve this
problem in the next section.

4 DETERMINING THE SIGNS OF THE DIF-
FERENTIAL POWERS OF THE SOURCES

We consider the same source signals and mixing condi-
tions as in Section 2, except that no restrictions on the
mixing filters A;;(z) are needed here. Using only the
mixed signals y1(n) and y2(n), we aim at determining
the signs of the differential powers of the useful sources
z1(n) and z2(n), while being insensitive to the presence
of the noise sources z3(n) to zn, (n) in y1(n) and y2(n).
To this end, we here extend the approach that we pro-
posed in [5] for a partly related problem. We first filter
the observed signals y;(n) by means of narrow-band fil-
ters, whose transfer function is denoted B(z). The two
resulting signals y;(n) and y4(n) may be expressed as
mixtures of the narrow-band versions of the sources, i.e.
of X/(z) = B(2)Xi(2). Moreover these mixtures are
thus approximately restricted to a simplified form only
involving attenuations a;; and time delays m;;, i.e:

N,
yi(n) = Zaijrc;-(n — mij), Vie{1,2}. (16)
Jj=1

We then introduce the ”conceptual” [5] signal

s(n) =yi(n) — cys(n — k), (17)

where ¢ and k are resp. real-valued and integer-valued
tunable coefficients. Now consider the differential power
DPs(n1,n2) of this signal, defined by (14). It may be
shown easily that the long-term stationary sources x3(n)

to z,(n) yield no contributions in DP,(ny,ns). More-
over, zi(n) and x}(n) are here assumed to be MA pro-
cesses, i.e:

Lo
gin)= Y di(m)pi(n—m)

m=—L1

Vie{1,2}, (18)

where p;(n) is a short-term stationary white signal. The
above equations then yield, for ns — ny long enough:

+oo
DPs(n1,na) = DPp,(na,m2) Y hi(m)

“+oo
+DPy, (n1,m2) Y h3(m) (19)

with:
h1 (m) = Ol11d1 (m — m11) — COt21d1 (m — M9y — k) (20)
hz (m) = Oé12d2 (m - m12) - ca22d2 (m — Moo — k‘) (21)

This leads to the following properties concerning the
variations of the sign of DPs(n1,n2) vs ¢ and k, when
DPp, (n1,n2) and DPp,(n1,n2) have given signs:

1. First consider the case when:
DPp,(n1,n2) >0 and DPp,(n1,m2) > 0. (22)
If there existed a value (c,, k,) of (¢, k) such that:
VYm, hi(m) =0 and ha(m) =0, (23)
this value would meet the conditions:

c:=oq1far , k. =mi —my (24)
c; =oqzf/oy , k;=mi2 —ma (25)
due to (20)-(21). But this requires:

a1l 12
— = — and mi; — Mol = M3 — Maa. (26)
Q31 (e5))

yi(n) and y4(n) are then only a scaled and time-
shifted version of one another as for the contribu-
tions of z}(n) and z4(n) that they contain. We
exclude this degenerate case here, so that:

+oo +oo
V(c,k), Y hi(m)>0or Y  h3(m)>0.

N N 27)
Combining this with (19) and (22) yields

Y (¢, k), DPs(ni,n2) > 0. (28)
2. It may be shown in the same way that
DPp,(n1,n2) <0 and DP,,(n1,n2) <0 (29)
leads to

Y (¢, k), DPs(ny,ns) <O0. (30)



3. Now assume that DPp, (n1,n2) and DPp,(n1,n2)
have opposite signs. The values of (¢, k), defined
by (24) and (25) resp. result in DPg(nq,ng) =
DP,,(n1,m2) S35 h3(m) and DP,(n1,ne) =

m=—o00
DP,, (n1,n2) YF % _ h3(m), which here have op-

posite signs. DPg(n1,n2) therefore takes positive
and negative values when (c, k) is varied.

The above results define the properties of the differen-
tial power DP;(n1,ns2) of the signal s(n) with respect to
those of the differential powers DP,, (n1,n2) of the inno-
vations processes p;(n) of the source signals. Conversely,
one then easily derives from this analysis the following
properties of DP,, (n1,ns) vs those of DP;(nq,ns) !

1. If the sign of DPg(n1,n2) changes when (c, k) is
varied, then DPj, (n1,n2) and DPp,(n1,n2) have
opposite signs?.

2. Otherwise, DPp, (n1,n2) and DPp, (n1, n2) have the
same sign, which may be determined as follows.
DP;(n1,ns) then has the same sign whatever ¢, and
this sign is the same as that of both DPp, (n1,n2).
This sign is e.g. the sign of DP,(ny,ns) obtained
when setting ¢ = 0. But in this case

s(n) = y1(n), (31)
so that
DPs(n1,m2) = DPy; (n1,m2). (32)

Therefore, in this case the common sign of both
DPp;(n1,n2) is obtained as the sign of DPyr (n1,n2)
which is an observable quantity.

The above criterion provides the signs of the differential
powers of the innovation processes of the source signals.
The same criterion applies to the sources signals them-
selves and to z}(n): for short-term stationary signals
and for ny — n; long enough, (18) yields:

Lo
DPy(n1,m2) = DPpi(n1,m2) Y, di(m),  (33)

m=—L1

80 DPy(n1,n2) and DPy, (n1,n2) have the same sign,
and the same principle applies to DP;; (n1,n2).

The above criterion provides no practical means for
determining if the sign of DPs(n1,ns) varies with (c, k):
(19) cannot be used to this end, as the h;(m) are un-
known in practice. This problem is solved by considering
s(n) with respect to the filtered mixed signals. We then
derive DP;(n1,ns) from (17), which yields

DPs(n1,m2) = DPy, (n1,m2)c? — 2DRysy, (n1,n2,k,0)c
+DPy, (n1,m2). (34)

1For the sake of brevity, we omit the case when one or both
DPp;(n1,n2) are zero.

2There is no sense wondering which of the innovation processes
has a positive differential power, as the order of the sources in the
considered mixed signals is arbitrary.

DP,(n1,ns) thus appears as a 2"¢-order polynomial of
c. Its coefficients, which depend on &, may be estimated
from the filtered observed signals. The method that we
propose for determining the signs of the differential pow-
ers of the source signals therefore consists in successively
considering all integer values of k situated in a domain
which contains the two values defined by (24)-(25). For
each such value of k, we :

e Estimate the coeflicients of the polynomial of ¢ de-
fined by (34).

e Determine if the sign of this polynomial changes
when c¢ is varied, i.e. if this polynomial has at
least one real-valued root. This only requires one
to check the sign of its determinant.

e Derive the signs of DP,,(n1,n2) from the above
criterion, i.e. briefly: they have opposite signs iff
the sign of DP(n1,n2) changes vs ¢ for a given k
or from one value of k to the next one.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we first analyzed the stability of the
BSS approach for underdetermined convolutive mix-
tures that we proposed in a previous paper. This showed
that the adaptation gains of this approach should be se-
lected depending on the signs of the differential powers
of the useful sources to control its stability. This led us
to develop a method for deriving these signs from the
observed mixed signals in order for the approach to be
applicable to a blind context. We now plan to apply
this overall approach to real signals.
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