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1 ABSTRACT

Nonlinear masking of space-time representations of speech
is a universal technique for speech processing. In the present
work we use an AM representation of cochlear filterbank sig-
nals in combination with a mask that is derived from a net-
work of oscillatory neurons. The proposed approach does
not need any training or learning and the mask takes into ac-
count the dependence between points from the auditory de-
rived representation. A potential application is illustrated in
the context of speaker segregation.

2 INTRODUCTION

2.1 Space–time representation
Speech enhancement, speaker segregation , speech recogni-
tion and coding can be viewed as the result of 3 successive
processes.

1. Decomposition of the speech signal into an adequate
space–time representation (auditory image representa-
tions, spectrograms, wavelet decompositions, etc.);

2. Selection of the relevant information from the chosen
representation or masking of the irrelevant information;

3. Synthesis of the speech (enhancement, speaker segre-
gation , coding) or extraction of the parameters from
the selected relevant areas of the representation (speech
recognition).

In the context of speaker separation the objective is to
mask the contribution of the undesirable speakers from the
representation and to keep the contribution of the target
speaker.

2.2 Nonlinear masking of a time–space representation
of speech

It is performed by masking theirrelevant information of the
representation and by keeping theinteresting one. The no-
tion of irrelevant or interesting information is relative to the
application. For speech enhancement the objective can be to
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keep the less corrupted channels (interesting) and to throw
away the others (irrelevant); for speech recognition the ob-
jective is to extract the features only from the reliable and
discriminant regions (interesting) of the representation, etc.
There are many ways to perform the masking of time–space
representations of speech and for each representation there
are also many strategies.

2.3 Examples of masking speech representations

The work by Bahoura and Rouat [2][3] is an example of non-
linear masking by thresholding the wavelet packet represen-
tations of speech. It is being used for speech enhancement.
Another example of masking being used in speech recogni-
tion can be found in the work by Cookeet al. [5].

In [2], the evaluation of the mask does not take into consid-
eration the correlation between the scales (yielding disconti-
nuities), while in [5] a preliminary evaluation of the proba-
bilities (training) is required. The idealistic system should
instantaneously find the mask (without preliminary training)
and take into account the interchannel information (Fig. 1).

We explore the feasibility of the creation of nonlinear
masks that do not require any training and that have been de-
signed by taking into account the dependence between points
of the space time–representation. We present an exploratory
work where the space–time representation is based on signal
envelopes obtained from a bank of cochlear filters (Fig. 1),
while the mask is obtained via a network of oscillatory neu-
rons.

3 ADAPTIVE NONLINEAR FILTERING AND
RECOGNITION WITH NEURONS

The information processing performed by a neuron can be
viewed as 1) nonlinear filtering of sequences of spikes via the
dendritic tree and the soma, 2) classification by thresholding
the nonlinearly filtered information.

The topological organisation of the dendritic tree specifies
the pseudo–transfer function of the nonlinear filter (delays,
absorptions, summations, products of electrical potentials),
while the firing of the neuron will occur only when the fil-
tered electrical potential will be sufficiently high. Schemat-
ically, we can say that the neuron fires when it recognises a
specific sequence of spikes as input to its dendritic tree [8].



As the behavior of the dendrite and the synaptic weights are
continuously updated, it is said that plasticity and change of
synaptic weights allow adaptive filtering and classification.

What kind of features do the individual properties of neu-
rons carry at the level of group of neurons? In our work,
we study one aspect of that question by observing the abil-
ity of neurons to dynamically cluster depending on the input
speech. For the time being, we fix the topology of the den-
drite and we focus on continuous adaption of the synapses.
We experiment on a network of chaotic neurons to create
adaptive nonlinear filters and clusters of neurons.

4 NONLINEAR MASKING AND NETWORKS OF
OSCILLATORY NEURONS

An adequate masking should suppress the undesirable speak-
ers and track the target speaker by finding the streams (c.f.
Bregman [4] for definition of streams) that characterise the
speakers. To do so, the system should cluster points of
the representation according to their relationship with the
speakers. Streams are obtained by 1) finding the clusters
and 2) classifying the clusters according to their relation to
a speaker. It is generally not trivial to establish a relation
between the clusters and decide if they belong to the same
stream of information (i.e.: come from the same speaker)
or not. Usually complex strategies are required to group
the clusters into streams of patterns that belong to the same
speaker (segregation and fusion of streams).

There is also strong evidence that oscillatory neural net-
works are able to find clusters of homogeneous information
by dynamically nonlinearly filtering the information. For ex-
ample, it has been shown that an unsupervised neuronal sys-
tem can perform segmentation of images [18].

The clustering can be performed at the level of group of
neurons, based on spike synchrony (see for example the work
on ”oscillatory correlation” by V.d. Malsburg [7]). It is pos-
sible to implement such ability by continuously changing the
synaptic weights of spiking neurons.

5 SPEECH STRUCTURE AND MASKING

Speech features are also encoded in the time structure of the
signal. In fact, speech has a specific (characteristic) struc-
ture that is different from that of most noises and perturba-
tions [11].

According to Bregman [4], the phasic analysis performed
by the auditory system, in conjunction with the tonal anal-
ysis, is adapted to the perception of speech in adverse en-
vironment. The spectral integration (or grouping of sounds)
was shown to be partially based on common amplitude mod-
ulation characteristics. Furthermore, research work on auto-
matic demodulation of speech can be motivated by the fact
that the human brain has neural cells specialized in Am-
plitude Modulation (AM) and Frequency Modulation (FM).
Moreover, simple nonlinear operators can enhance the AM or
FM information in a signal [10] [14] and can be used to pro-
cess the output of a cochlear filterbank in order to obtain AM
information characteristics of speech signal and segregate it
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Figure 1: EnvelopesAi(t) for two simultaneous vowels: /i/
by a female, /a/ by a male [11].

from background noise [12]. As we also know the perfor-
mance of humans in doing ASA (Auditory Scene Analysis)
is far better than known sound separation algorithms [4] [1].

6 SEPARATION OF AUDITORY SOURCES USING
BIOLOGICAL NEURAL NETWORKS

We applied correlograms of AM envelopes of cochlear fil-
terbank outputs to a network of oscillatory neurons, in or-
der to separate two speakers (or a speaker from a tone).
In this approach synchronised regions belong to the same
speaker while desynchronised regions with respect to the first
speaker’s clusters correspond to other speakers (or noise).
Our proposed network is composed of chaotic neuronal ele-
ments as in [9] but is one dimensional. Our weight adaptation
algorithm is a modified version of the rules proposed in [9].
We achieved synchronisation patterns that are different from
those in [9]. In fact, we observe periodic and quasi–periodic
patterns and believe that it is more biologically plausible. In
contrast with other works [15] [17] we do not need any global
controller. In fact, our tests on pilot and real data show us that
the symmetry breaking is done automatically in this network.

To our knowledge, it is the first time that real speech data
are applied to aone dimensional biologically inspired neural
network. In addition, our network and its associated weight
adaptation rule is well suited to multilevel inputs and is not
limited to binary data.

6.1 Preprocessing of the speech signal

We tested our network with broadband and narrowband
noises. For the broadband noise case, we chose a sound
containing two utterances of simultaneous/di:/ and /dae/ .
The /di:/ is pronounced by a female speaker and/dae/ by a
male speaker. For the narrowband noise case, we used a male
speaker sentence contaminated by a tone.

Our preprocessing stage consists of a 24 channel cochlear
filterbank that mimics in part the behavior of the human
cochlea. The feature extraction algorithm described in [13]
has been used and the normalized correlogram is computed
for the delays corresponding to the pitch of the target speaker.



In order to find the pitch of the signal we used the pooled cor-
relogram technique [17]. Then the correlograms are quan-
tised to a limited number of levels (4 levels) and applied to
our network of chaotic neurons.

6.2 Architecture of the network

The segmentation is based on the ”firing” coherence between
neurons. The neurons with the same phase belong to the
same cluster (note that in the case of chaotic behaviour, out-
put similarity is a measure of synchrony). We used a network
of locally connected neurons to segregate sound sources us-
ing the ”oscillatory correlation” approach [7].

The auditory image is two-dimensional (Fig. 1). One of
the dimensions, frequency, is bounded (24 channels in our
case), but time is unbounded and can run to infinity. We
could segment the auditory image into smaller images that fit
in the architecture of a two-dimensional network. By doing
so, each point of the auditory image would be applied to the
input of a neuron of the network. Therefore, there would be
a one-to-one correspondence between frame pixels and neu-
ron inputs [17]. The disadvantage of this technique is that,
as soon as a new frame is applied to the network, it forgets
previous frames.This is why we decided to use a one dimen-
sional network of neurons. Each neuron corresponds to one
channel and the cochlear outputs run freely through the net-
work. We used the chaotic neural network and a relaxation
oscillatory network for comparison purposes.

6.2.1 Relaxation Oscillator neurons

We used an array of neurons in a one dimensional network of
Locally Excitatory Globally Inhibitory Oscillatory Network
(LEGION) [6] [15] . A global controller is used to break
the symmetry between different regions. A fixed weighting
algorithm as described in [17] is used. The dynamics of each
neuron is governed by the modified Van der Pol Equation
[16].

6.2.2 Chaotic neurons

An array of chaotic neurons is used to segregate speech. The
dynamic of each neuroni is governed by a Chaotic Map [9] :

xi(t+ 1) = (1� �)f(xi(t)) +
�

N
�N
j=1

f(xj(t)) (1)

f(x) = ax(1 � x) is the logistic map,N the number of
neurons. We used a modified version of the dynamic neigh-
borhood algorithm described in [9] since we are using a one-
dimensional network in contrast to the two dimensional net-
work used in [9] for image segmentation purposes. In addi-
tion, our proposed modified weight adaptation rule is able to
process non-binary data. The aforementioned proposed al-
gorithm is implemented as follows: Each neuron in the net-
work is connected to other neurons of the network through
discrete-time delays (the maximum neighboring distance of
connections is set to 10 neurons). In the beginning, each
neuron runs freely, that is no synaptic connection is estab-
lished between neurons. Later, connections are established

according to the update formula in Eq. 2. The farther a neu-
ron is from another one, the longer the update delay time
is. We chose an exponential delay formula based on the dis-
tance between neurons. The delays are constants equal to
di�j = (2�)(i�j) , where� is set to 1 in our case and,i and
j are neuron indices. The update equations are as follows:

wij(t) =

�
e�5:5�j(xi(t�di�j)�xi�1(t�di�j)j t� di�j > 0
0 otherwise

(2)
At t = d1, connection strengths between the closest neigh-
bours to all neurons are established. Note that at this instant
farther connections are still equal to zero. Att = d2, weights
are modified for neurons that are 2 neurons far from neuroni

in the network. This continues until connections to all neigh-
bouring neurons are established. In this way, the region of
synchrony around a neuron shrinks or grows at fixed time
delays according to the defined learning rule.

The mask is generated by using the output of the network.
Then, speech is synthesised by weighting the filterbank out-
puts with that mask. The oscillatory neural network that we
use has the advantage of creating a mask that takes into ac-
count the mutual information from the cochlear channels and
that does not require any training.

6.3 Results

We observed that it is really difficult to achieve synchroniza-
tion in the multilevel correlogram case for the relaxation os-
cillator network described earlier as the oscillation frequency
is dependent on the magnitude of the input signal. In fact, it
is not possible to obtain neuron outputs with equal frequency
in the entire network and phase shifts between clusters. As
a consequence, ”oscillatory correlation” may not be used for
sound segregation with our architecture.

On the other hand, chaotic neurons have much less com-
putational complexity (they require only additions and multi-
plications), in comparison with the relaxation oscillator net-
work for which third order Van der Pol differential equations
[16] must be solved.

Fig. 2 (a) is the output of the chaotic neural network for the
two speakers sound segregation case. As we can see, outputs
have periodic or quasi-periodic steady state behavior. In fact,
steady state chaotic behavior for this one-dimensional net-
work is reached only if the maximum neighborhood distance
is chosen very small (4-5).

Subjective hearing tests for the broadband and narrowband
noise case showed that in contrast with classical methods
(wavelet, inverse filtering, etc.), the output of this approach
is smooth and there is no discontinuity or perceptible distor-
tions in the segregated speech. This could be very advanta-
geous when used as a front-end of a speech recogniser.

6.4 Further works

An expansion to more channels and as a consequence to a
greater neural network could lead to a finer clustering of re-
gions and to a better audio quality.
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Figure 2: Two simultaneous vowels: /i/ by a female, /a/ by a
male. Due to the nonlinear ERB scale in (a), the reader should not try to

match the vertical axis with that in (b).

In addition to the analysis already undertaken, more de-
tailed analysis is required to compare relaxation oscillators
to chaotic neurons for this application.

More rigorous performance criteria should be found in or-
der to compare results, knowing that the SNR is not a good
criteria for sound intelligibility. Although some approaches
have good SNR performance, they have quite poor subjective
hearing quality.

The update delays in section 6.2 are set empirically on a
trial-and-error basis. Further work should be done to find an
optimal way to find these parameters. We may include an
adaptive learning to adjust updating delays.

7 CONCLUSION

There are limitations to the present approach, one of them,
being that the reported experiments have been performed on
voiced speech with preliminary estimates of the pitch from
the target speaker. Still, the principle of mask generation with
such a neural network is interesting and promising. Although
the experiments are preliminary, we believe that the approach
has a strong potential in relation to nonlinear speech process-
ing.
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