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ABSTRACT

Selecting the optimal time—frequency distribution
(TFD) for a given real-life signal is one of the major
challenges in the field of time—frequency analysis. In this
paper, we define a methodology, based on the perfor-
mance measure for quadratic class of TFDs [1, 2], that
allows for such selections to be made for different regions
in the time—frequency domain, where specific signal fea-
tures of interest are located. A TFD which is capa-
ble of preserving and enhancing those features, while at
the same time it satisfies specific, application—dependent
constraints, is selected as the signal optimal TFD for
the observed region. The use of this methodology is
illustrated on an example of a multicomponent, nonsta-
tionary, real-life signal, for which the optimal TFD is
required to meet the components’ unbiased and efficient
instantaneous frequency estimation constraint.

1 INTRODUCTION

Many real-life signals (e.g. speech, biomedical, under-
water, seismic) are nonstationary [3]. Therefore, their
spectral analysis needs to be carried out using tools
which accommodate for the time-varying spectral con-
tent of the signals. One of the best known of such tools
are the time—frequency distributions (TFDs) [4, 5, 6, 7].

The last two decades have seen a significant contri-
bution to the field of time—frequency signal analysis,
with many time—frequency distributions being proposed.
Among the most studied and used are the TFDs from
the quadratic class of time—frequency distributions [3, 8]:
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where z(t) is the analytic associate of the real signal
under analysis [3, 5], and g(v,7) is the kernel function
which defines the TFD and its properties [3, 5, 6, 7.

Although they all contain the same information, dif-
ferent TFDs may display that information in the time—
frequency plane with different amount of details and ac-
curacy. Selecting a TFD which does this in the ”optimal
way” is a critical factor when applying time—frequency
analysis to nonstationary signals, in particular to real-
life signals.
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In this paper, we define a methodology, based on the
TFDs’ performance measure P [1, 2, 9], that allows for
the selection of the optimal TFD, under application—
specific constraints, for real-life, multicomponent sig-
nals, in time—frequency regions where the signal fea-
tures of interest are located. An example of how this
methodology is applied in practice is included, in which
the optimal TFD, that satisfies the unbiased, efficient,
multicomponent instantaneous frequency (IF) estima-
tion constraint, is found for an Australian bird song sig-
nal.

2 METHODOLOGY FOR SELECTING THE
OPTIMAL TFD FOR REAL-LIFE SIG-
NALS UNDER GIVEN CONSTRAINTS

In order to choose a TFD which satisfies specific con-
straints, and is optimal for a given multicomponent,
real-life signal, the following methodology can be used:

1. First, represent the signal in the time—frequency
domain using the Wigner—Ville distribution
(WVD) [3], the spectrogram [5], and the Modified
B distribution (MBD) [10]. These three distribu-
tions will provide us with indications of the main
signal features in the time—frequency plane: the
number of components, their relative amplitudes,
the components’ durations and bandwidths (fea-
tures obtained from the MBD and spectrogram),
as well as the cross—terms locations (obtained from
the WVD).

The WVD is a parameter—ree TFD, while the pa-
rameters of the spectrogram and MBD (the window
type and length, and the parameter 3, respectively)
need to be initialised. In the case of spectrogram,
we use the Hanning window as the initial window
type, and from several window lengths (whose val-
ues depend on the signal time duration) select as
the initial window length the one that results into
the most visually appealing time—frequency plot. In
the case of MBD, the initial value for 8 is set to
0.001. The choice of these initial parameter values
is based on the fact that the spectrogram with the
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Figure 1: Time representation of the Noisy Minor song
signal

Hanning window and MBD with 8 < 0.001 have
been found to perform very good for the major-
ity of various signals whose TFDs’ performance we
have analysed [1, 2, 9, 11].

2. Using those TFDs, we then identify regions in the
time—frequency domain where certain application—
specific signal features (e.g. closely—spaced com-
ponents, crossing components, sudden change in
a component FM law, etc) are located. We call
such regions the Regions of Interest (ROIs). The
ROIs are the rectangles in the time—frequency plane
whose dimensions are the “time of interest” and the
“frequency of interest”. The time (frequency) of in-
terest is the time interval (frequency band) of the
TFD where the signal features we are interested in
are located in time (frequency).

3. Different TFDs are now optimised, as described
in [1, 2] and summarised in Section 2.1, for each
of the selected ROIs, such that the signal charac-
teristics in a particular ROI are represented in the
best possible way.

4. Only those TFDs that meet the given, application—
specific constraints are then considered, and the one
which achieves the best performance among them,
as measured by the TFDs’ performance measure P
(see Section 2.1), in a particular ROI, is selected
as the signal optimal TFD in that ROI.

2.1 Performance Measure for TFDs

There are two major factors that affect the performance
of quadratic TFDs when used to represent nonstation-
ary, multicomponent signals in the joint time-frequency
domain. These factors are commonly referred to as con-
centration, and resolution [9].

The concentration is measured by the width of
components’ mainlobes (a.k.a the instantaneous band-
width [5]) about their respective instantaneous fre-
quency (IF) laws [3]. The resolution, on the other hand,
is measured by the minimum frequency separation be-
tween the components’ mainlobes, for which the indi-

‘Signal power spectium

0 005 01 015 02 025 03 035 04 045 05
frequency

Figure 2: Frequency representation of the Noisy Minor
song signal

vidual components’ features (mainlobe amplitude and
bandwidth) are just preserved [9].

To objectively evaluate the concentration and reso-
lution capabilities of TFDs, the instantaneous (at the
TFDs’ time instant ¢ = ¢;) performance measure P; has
been defined [1, 2J:
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where, for a pair of signal components, Ay and Ag are
the average amplitudes of the components’ mainlobes
and sidelobes, respectively, A x is the cross—term ampli-
tude, and f; and f, are the components’ IFs with their
corresponding instantaneous bandwidths B; and Bs.

When P,; is close to 1, the TFD is said to have a good
performance, while for P; close to 0, it has a poor per-
formance. By averaging P;s over a range of TFD’s time
instants, we obtain the ”overall” performance measure
P,. The value of the TFD parameter that maximise P,
is chosen as its optimal value, with the corresponding
P, being the TFD’s optimal performance measure P. A
TFD with the largest P (hence with the best concentra-
tion and best resolution) is the optimal time—frequency
distribution for the given signal [1, 2].

3 EXAMPLE

Let us illustrate the use of the methodology de-
fined in Section 2 for the ”Noisy Minor” (Manorina
Melanocephala) bird song signal [12]. The constraint
which the best performing TFD needs to satisfy in this
example is the unbiased, efficient, multicomponent IF
estimation in time—frequency regions where the signal
components are closely—spaced.

The time and frequency (power spectral density) plots
of the signal are shown in Figures 1 and 2, respectively.
From the signal time—domain plot, we can see how its
amplitude varies with time, and from Figure 2 what
frequencies (with what magnitudes) are present in the
signal. However, neither of the two plots can provide us
with information on the signal internal structure (num-
ber of signal components, their amplitudes, IF laws,
time intervals and frequency bands those components
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Figure 3: Regions of Interest (ROIs) for the Noisy Minor song signal’s time—frequency distributions

occupy, etc).

To have a more complete ”picture” of this signal, we
analyse it in the time—frequency domain. This requires
identifying a TFD (among many different TFDs belong-
ing to the quadratic class) that is optimal for the sig-
nal. By employing the steps of the previously defined
methodology, we can find the regionally optimal TFD(s)
for the Noisy Minor song signal as follows.

First, we represent the signal in the time—frequency
plane using the WVD, MBD (8 = 0.001), and the spec-
trogram with the Hanning window of length 511. In se-
lecting the optimal window length for the spectrogram,
other lengths (127, 255, 1023) we also tested, but 511
resulted in the most visually appealing time—frequency
plot of the signal spectrogram.

By comparing the plots of those TFDs, several dom-
inant ridges (components) have been identified in the
signal, and four regions of interest have been defined
where the components form closely—spaced pairs in the
time—frequency plane (see Figure 3). Our objective is
to improve on different TFDs’ resolution in the selected
ROIs such that the best possible separation of the signal
components is achieved. This would then allow one, to
more accurately extract the components IFs from their
peaks [3].

For each of the four ROIs, we optimise different TFDs
using the performance measure P, as described in Sec-
tion 2.1. The optimisation results are given in Table 1.
From Table 1, we can see that the Modified B distribu-
tion with 8 = 5 x 1072, having the largest P among the
eight TFDs we have used in this example, achieves the
best concentration and resolution of the signal compo-
nents in ROI;. It just outperforms the smoothed WVD

(with the Hamming window of length 415 chosen as the
smoothing window) and the spectrogram (with the Han-
ning window of length 447). Other TFDs, even after be-
ing optimised in ROI, still do not achieve as good per-
formance as the MBD does. The Rihaczek distribution,
and WVD in particular, perform poorly, as indicated by
their P values of 0.5825 and 0.4984.

Similar analysis can be done for ROI;, ROI; and
ROI,. What is interesting to observe is that the spec-
trogram has the best resolution (and therefore concen-
tration) performance in each of ROI>, ROI3 and ROI,.
The spectrogram’s performance closely matches that of
MBD in ROI; too. Note also that the three best per-
forming TFDs for all ROIs considered in this example,
with very similar performances, are the spectrogram,
the Modified B distribution, and the smoothed WVD.
The fact that more than one TFD performs relatively
good for a certain signal can be of benefit to the sig-
nal analyst, giving him(her) more freedom in selecting
the optimal TFD for that signal, when satisfying certain
constraints is also required in a particular application.

In this example, apart from the fact that we want
to find TFDs that result into the best concentration
and resolution of the signal components in the selected
ROIs, we also want to use those TFDs to estimate the
components’ IF laws by extracting the peaks of the com-
ponents ridges [3] in the same ROIs. Among the three
best performing TFDs (spectrogram, smoothed WVD,
and MBD), only the MBD is capable of providing us
with unbiased and efficient multicomponent FM signals’
IF estimates [10]. Therefore, under the given IF estima-
tion constraint, we select the Modified B distribution as
the optimal TFD of the Noisy Minor song signal, for all



ROI ROI, ROI; ROI4
TFD P | parameter P | parameter P | parameter P | parameter
Born-Jordan [4] 0.7574 N/A 0.9005 N/A 0.8647 N/A 0.8837 N/A
Choi-Williams [4] 0.8755 c=3 0.9323 | ¢ =0.09 0.8723 c=03 0.9077 c=3
Modified B 0.9198 | B=5x10"" || 0.9433 | B=6x10"° || 0.8907 | B=4x10"* || 0.9602 | 3 =3x10""°
Rihaczek [8] 0.5825 N/A 0.7883 N/A 0.6260 N/A 0.6916 N/A
Smoothed WVD [7] 0.9195 | Hamm, 415 || 0.9420 | Bart, 383 || 0.8879 | Bart, 159 | 0.9534 | Rect, 287
Spectrogram 0.9145 | Hann, 447 || 0.9574 | Bart, 383 || 0.9261 | Hann, 223 || 0.9710 | Bart, 447
WVD 0.4984 N/A 0.7858 N/A 0.6077 N/A 0.5813 N/A
Zhao—Atlas-Marks [4] || 0.7900 a=1 0.8409 a=1 0.7922 a=3 0.8191 a=2

Table 1: The performance measure P and optimal parameter values of TFDs of the Noisy Minor song signal for four
different regions—of—interest (ROIs), as defined in Figure 3

ROIs. Note that the optimal value of the MBD param-
eter [ varies across the considered ROIs, so that in each
of those regions the best components’ concentration and
resolution is achieved; both of which are required for a
robust IF estimation for multicomponent signals [10].

4 CONCLUSION

A methodology for selecting a time—frequency distribu-
tion, which, under some application—specific constraints,
is optimal for the given real-life signal, has been defined
in this paper. The use of the methodology in practice,
was illustrated on an Australian bird song signal. We
have shown that the only TFD which is capable of en-
hancing the signal components’ concentration and reso-
lution, while at the same time satisfying the unbiased,
efficient, components’ IF estimation constraint, in all se-
lected time—frequency regions where the signal compo-
nents were closely—spaced to each other, was the Mod-
ified B distribution. The distribution parameter 8 was
optimised for each of those regions, such that the best
components’ concentration and resolution (and so more
robust IF multicomponent estimations) were achieved.

A major advantage in using this methodology is that
additional constraints can be easily introduced in the
analysis. This only requires, for a particular time—
frequency region, identifying those optimised TFDs
which meet the given constraints, and selecting the one
with the best performance (as measured by the TFDs’
performance measure P) among them as the signal op-
timal TFD in that region.
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