Wavelet-thresholding for bispectrum estimation
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ABSTRACT

The bispectrum is crucial for description of non-
Gausssian and/or non-linear signals. In this paper we
propose wavelet-thresholding estimators of the bispec-
trum of zero-mean, non-Gaussian, stationary signals. It
is known in the case of Gaussian regression that wavelet
estimators outperform traditional linear methods if the
regularity of the function to be estimated varies sub-
stantially over its domain of definition.

The goal of this paper is to extend the wavelet-
thresholding estimation method to bispectrum estima-
tion. We will show that, in the context of the bispectrum
estimation, wavelet-thresholding estimators outperform
linear (kernel) estimators.

1 Introduction

In signal processing, the spectral density is an appropri-
ate tool for the description of second-order statistics. It
is well known that it characterizes completely stationary
signals which have Gaussian distributions.

If the signal under study is non-Gaussian, or if it is the
result of nonlinear dynamics, knowledge of the mean
value and the spectral density is not sufficient to fully
characterize the signal [1]. In such cases, one has to
exploit high-order statistics (HOS) and, in particular,
high-order spectra [1]. Unlike spectral density, (HOS)
measures are phase-sensitive. The bispectral density has
received special attention in the literature (see e.g. [2]).
It can be useful in many non-trivial applications (phase
identification, measure of the deviation from Gaussian-
ity of a signal [1], ...).

Many of the well-known spectral-density methods have
been generalized to the bispectrum domain. Paramet-
ric estimators were suggested in [3], yielding estimators
with improved frequency resolution. Non-parametric es-
timotors, like multitaper estimators [4] were also stud-
ied. These estimators work well for signals with slowly
varying bispectra, but they are not so successful if the
degree of smoothness of the bispectrum highly varies
over the bifrequency domain. In the present paper we
propose a wavelet-thresholding estimator of the bispec-
tra for a wide class of stationary signals. Like in the

case of Gaussian regression, we show that this estima-
tor reaches minimax rate on Sobolev spaces, which is not
attained by linear (kernel or spline) estimators whenever
a certain amount of inhomogeneity in the smoothness of
the bispectrum is present. Also, this estimator preserves
spatial-adaptivity property.

The paper is organized as follows. In Section 2, we in-
troduce the basic notations and hypotheses. In Section
3, we show how to transfer the bispectrum estimation
problem to a Gaussian regression problem. This gives us
minimax results for the estimator. In Section 4, we fur-
ther improve the estimator, using the underlying sym-
metries of the bispectra. Finally in Section 5, we give
some simulation.

2 Hypotheses and Notations

We denote the bispectrum of a stationary signal X; by
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A naive estimator of g is the tapered biperiodogram :
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3
where dT(\) = 70 hi(L) Xpe 2, |)\1| Dol < L,
and HY = ST )i hi, @ =1, 2, 3, are

the taper functions. Izt/:ishv\fell known that, under quite
general assumptions, I7(A1, A2) is asymptotlcally unbi-
ased for g(A1,A2) and that the use of a smooth data
tapers h;, 1 < ¢ < 3, reduces the finite sample bias of
the biperiodogram. However the biperiodogram is anti-
consistent: his variance is proportional to the sample
size T. In order to ensure consistency, kernel meth-
ods use adequate kernels with well chosen bandwidth to
smooth the biperiodogram. Alternatively, we attempt
to construct wavelet-thresholding estimator of the bis-
pecrtum, which outperform linear traditional ones.
More precisely, we will consider the following model :

I (A1, A2) = g(A1, A2) + e (M1, A2) (1)



Unlike the traditional models used in wavelet regression
estimation the errors, er, in this model is not Gaussian
nor i.i.d.

Our goal is to construct a near-minimax wavelet-
thresholding estimator of g, in the Sobolev ball
Wnp(C) = A{llfllz,qo12) ||%||LP([0,1]2) +
||272nt||Lp([o,1]2) < C}, based on the model (1). Such
an estimator is obtained by using a two-dimensional
wavelet decomposition of the tapered biperiodogram,
threshold the obtained empirical wavelet coefficients
and then reconstruct the estimator from the thresholded
coefficients.

Let us consider an orthonormal-wavelet basis of
L2 (R), associated to the following scaling and wavelet
functions:

Gur(z) = 2/28(2w — k), vj4(2) = 20202z — k),

and let the periodized wavelets be given by
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Then, using a classical separable 2D-wavelet represen-
tation, we get the associated periodized bidimensional
wavelet basis of Ly([0, 1]?)

B = {1, (ks ko) } ks ey | {05 (k ko) iz (hr ko) e 2
z=h,v,d

where | > 0, H; = {0,...,29 — 1} and Ly([0, 1]?) is the
space of 1-periodic functions with finite energy. Since
the function of interest is 1 x 1-periodic, no boundary
correction of the wavelet basis is needed. The decompo-
sition of g on this basis reads:
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Recall that for the two-dimensional Gaussian white-
noise model Y (z1,22) = Owl 0” F(21,20)dz1dze +
eW (x1,22), where W is Brownian sheet and ¢ > 0 is
the noise level, the optimal convergence rate of estima-
tion of F in W, ,(C), is €2(™) where v(m) = L
and that this rate is attained by wavelet-threshold esti-
mators (see Neumann and Von Sachs [3]).

Our main result is to show that, for the model
(1), wavelet-thresholding estimators of the bispectra
g, attain near-optimal minimax rate of convergence in
Wi p(C).

One can make some objections on the minimax view-
point which focuses only on the worst case rather than
certain intermediate cases. However, for spatial adap-
tivity sake, which is of particular interest in spectral

analysis, one has to exhibit estimators which work well
for both spatially inhomogeneous smooth bispectra and
spatially homogeneous smooth ones. These bispectra
are well represented by functions in Wy, ,(C) with p < 2
for the first class, and p > 2 for the last one.

The empirical wavelet-coefficients of the bispectra are:
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So the wavelet estimator is
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Where §(.) denotes soft or hard-thresholding. The
threshold value AT > 0 and the set of resolution lev-
els J5T , on which the thresholding is applied, will be
specified later.

Further, we denote by <,k one of the coeflicients
Qj ks s J,kl’kz, by 7jki,k, one of the coefficients
Qj by kg O g g, A0 DY @k, k, the assomated wavelet-

basis function. We denote also by fyj’ ko ks UDE real and

imaginary parts of 7;, k., and similarly for 'y k1 k-
The variance of these components will be denoted by
O3k k- 1t is well known that the estimation of these
variances is crucial in the wavelet-thresholding frame-
work. Closed form asymptotic expressions for these vari-
ances can be obtained. We make the following two as-
sumptions. The first one is a mixing assumption which
is often satisfied by stationary signals. The second one
consists in imposing some regularity on the considered
wavelets.

Assumption 1 (X;); is a zero-mean processes, such
that Vs > 2, there exists C' > 0 such that

sup { D X,)|} < C2(sh)7H?
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These assumptions are satisfied, in particular for sta-
tionary processes, for many distributions (Gaussian, ex-
ponential, gamma, ...)
Assumption 2 .
° j) é and v are C™,
o i) [ 'O
o iii) C = max(|ll 2, [Bll2) and
D = max(||¢'[|z:[|¢'[|L1) are finite, and
max([| ¢,k loos 195,k [lo0) < A25.

These assumptions are widely satisfied. In particular
for Daubechies’s wavelets with support 2V, the last as-
sumption is satisfied with A = 2N max(||¢||oc, ||¥]|co)-

t)dt=0for0<I<m-—-1,



3 The minimaxity of the estimator

Assumptions 1 — 2 allow us to transfer the model (1) to
an additive Gaussian noise model. The near-minimaxity
of the estimator is then derived in the theorem below.
This result is based on estimation of the cumulants
of trilinear combinations of the process (the empirical
wavelet coefficients of the biperiodogram). By estima-
tion of the cumulants of bilinear functions of the sam-
ples, similar results have been obtained for the estima-
tion the evolutionary spectrum [5].

The thresholding is applied on details for resolution lev-
elsin JI ={1<j, 29 < T%}, for some § > 0 satisfy-
ing (1 — 0)r(m,p) > v(m), where r(m,p) =m+1+ %,
p = min(p, 2).

Theorem 1 Suppose that Assumptions 1 — 2 hold and
the threshold satisﬁfs )
5;”217k2(210g(|Jg’|))5 < /\] fke < KT72\/log(T) on
J5T, where K is a constant. Then,

suDgew (o)L E(ITr — 9112, 0, 1j2))} = O((BF2)*(™))

Elements of Proof:

By Assumptions 1 — 2 the problem in model (1)
is transferred to the followmg Gaussian regression one:

Ty i
5],]61,]6:2 ’7],161 ko + 0] kl k2617k17k27
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where €; 1, £, ~ N(0,1) are i.i.d..

In fact, from Assumptions 1 — 2, we show that for reso-
lution levels in Jj = {I < j, 27 < TE, 2 > T*}, for
any p > 0, the following estimation holds

|cum (’YJ,khkz 7J,k1,k2)| < (n;)3+3'y(K1 )7/1(7172)
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for appropriate Ky and p > 0, and this bound is
uniform in n >3 and j € JJ,. So using lemma 1 in [6],
we obtain the asymptotic Gaussianity of the empirical
wavelet coefficients for j in Jg: . Consequently we show
that, for p small enough (p <1 —wv(m)), the risk, over
resolution levels in J7, in the estimation of Vi ke ke DY
thresholding ﬁ;; ky With AT, . is equivalent, with
an error of order O((T)~*(™)), to the thresholding-risk
based on the Gaussian model (2). On the other-hand,
the error of the projection of g on the wavelet space
corresponding to resolution levels in j € JI is of order
O((T)~*t™). Since for j € Jgp the variances ch k17k2

are equivalent to T_%, the minimaxity of the estimator
is derived from classical results on the two dimensional
Gausssian model.

Note also that this rate is in general not reached by
linear estimators of the bispectra. In fact the L? risk of
linear estimators depends only on the first and second
moments of the error distributions. So, again, by the

equivalence above of the model (1) to the Gaussian
model and by classical results we can conclude that
linear bispectrum-estimation rate is the suboptimal

rate T-°(™) where m = m + 1 — % The near-optimal
rate (%)”(m) for the estimatlon of the bispectra is

then attained by the wavelet-thresholding estimator
but not by linear estimators if p < 2 (i.e. in cases
of inhomogenous regularity of the bispectrum on the
bifrequency domain).

Note that there are many possibilities for m and
p to fulfill (1 —0)y(m,p) > v(m). Hence the estimator
is simultaneously nearly optimal over a wide range of
smoothness classes.

4 Further improvement of the estimator

The estimator g reaches the desired near-optimal rate
(%)”(m), but there are two obvious possibilities to
improve it further for finite sample sizes.

First, in contrast to the usual kernel estimator of g,
wavelet estimators are not translation-invariant. If we
shift the biperiodogram by a certain amount (s1, s2), ap-
ply non linear thresholding and shift the estimate back
by (s1,s2), this new estimator §(*1%2) will differ from
the unshifted variant § in most cases. The only shift
lengths which do not alter the estimator g are multiples
of the shift length of the wavelet basis at the coarsest
scale, i.e % On the other hand, there is no reason to
assume that any of the possible shifts are always supe-
rior to the other shifts. To weaken the effect of not be-
ing translation-invariant we apply the well-known idea
of stationary wavelet transform (see for example Nason
and Silverman [7]) and define, with shifts s; ; = (s;, s;)
where s; = %, t=20,...,] —1, the new estimator

7" (M, A2) = Z G5 (g, Aa).

%,j=0

Then, we obtain by Jensen’s inequality that

llg* 9||L2([o 12) < I8 Z llgtes) —g||L2([o 2y (3)

%,j=0

where strict inequality holds if §(s#i) # glv.i') for
any (i,7) # (i',7"). In particular g* also satisfy the
result in theorem 1. Moreover, in view of the possibly
strict inequality in (3) we hope to get a significant
improvement for finite sample sizes.

Secondly, note that the bispectrum ¢ satisfies the
symmetries below, whereas they are not satisfied by
* if compactly supported wavelets different from the
Haar wavelets are used,

g1, A2) = g(=A1, —X2)
= g(A2, M) = g(=(A1 + A2), Aa), (4)



In order to construct an estimator which satisfies the
symmetries above we take the mean of eight symmetric
nearly optimal estimators:

77 (M, A2) = 377 (A1, A2) + 57 (A2, A1) + G5 (= A1, —A2)

+g* (=2, = A1) + 7 (= (M1 +A2), M) + 57 (= (AL + A2), A2)
+§*()\1 + A2, —)\1) + ?“()\1 + Az, —)\2)].

Hence, we have again by Jensen’s inequality, and the fact
that g satisfies (4), that the new estimator g** satisfies

15 = gllZeqo.0> < 18 = glE=qo.:

where strict inequality holds if two of the eight estima-
tors above are different.

5 Simulations

We consider an ARM A(2,2) signal:
Xe+ar X1+ a2 X2 =bYy +01Yi—1 +b2Yio  (5)

Where V; = €2 —1 and {¢;} is Gaussian zero-mean white
noise with variance 1. The constants are a; = 0.2,
as = 0.9, by =1, by =0 and by = 0.5. The theoretical
bispectrum of {X;} is given in Figure 1. It shows sharp
peaks and smooth regions.

We generate 100 samples of size 1024 according to (5).
We use the Symmlet 10 basis i.e. the least asymmetric,
compactly supported wavelets. In the notations of this
paper we choose [ = 3. The coefficients assigned to the
father wavelets are left unchanged. Soft thresholding is
performed for the levels j = 3, 4, 5, and the empirical
coefficients from the higher resolution scales 7 > 5 are
set to zero. To compute the thresholds, we exploit
the fact that the asymptotic variances 57  depend
only on the spectral density of the signal and the
wavelets used. So we started by whitening (at order
two) the signal {X;}, then we have computed a table of
variances , by empirical means, for a 2nd order white
noise. Then we have estimated the bispectrum of the
whitened signal. Let H()\) be the whitening filter, our
estimator is obtained by multiplying the bispectrum of
the whitened signal by H(M)H(A2)H (=AM — A2). In
figure 1 we show for a realization the result obtained by
our wavelet estimator. This figure shows the expected
effect: the wavelet estimator captures the peaks better
than ordinary kernel estimator and it is better on
smooth parts too. For the 100 realizations we obtain
an MSE =0.142.
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