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ABSTRACT

Subband adaptive algorithms have been developed for applications
such as acoustic echo cancellation and wideband active noise con-
trol, which require adaptive filters with thousands of taps result-
ing in high computational complexity and slow adaptation conver-
gence. By using subband adaptive algorithms, both computational
complexity and convergence rate may be reduced. Structures with
non-critical sampling of the subband signals have been frequently
employed in order to avoid aliasing effects. Recently, new subband
structures with critical sampling have been developed in which the
aliasing between adjacent subbands is completely canceled. In
this paper, theoretical analyses of the convergence behaviors of
subband adaptive algorithms with critical sampling are presented,
from which the convergence rates and minimum mean-square er-
rors can be estimated.

1. INTRODUCTION

Adaptive FIR filters are used in many applications, in view of their
stability and unimodal performance properties. However, in some
applications such as acoustic echo cancellation and wideband ac-
tive noise control [1], the order of the adaptive filters is very high,
resulting in a large number of operations for their implementation
and slow convergence of the coefficients. To solve these problems,
subband processing techniques have been proposed for the adap-
tive filters [2]-[4]. The advantages of subband processing are: the
computational complexity is reduced by approximately the down-
sampling factor, because both the number of taps and weight up-
date rate can be decimated in each subband; and the convergence
rate is improved because the spectral dynamic range is greatly re-
duced in each subband.

To implement the subband adaptive algorithms, oversampled
subband structures [2] and critically sampled structures [3],[4] have
been derived. In order to model a finite impulse response (FIR)
system with small asymptotic errors, adaptive subband structures
with critical sampling require additional adaptive cross filters among
the subbands [3], as illustrated in Fig. 1. The separate adaptation
of the direct path and cross filters results in slow convergence rate,
and such approach will be referred here as overdetermined sub-
band structure. In [4], a novel adaptive subband structure with
critical sampling was derived, where the extra filters among the
subbands are directly related to the direct-path adaptive filters, and
do not need to be adapted separately. The resulting structure is il-
lustrated in Fig. 2 and will be referred here as non-overdetermined
subband structure.
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In this paper, the behaviors of the critically sampled adaptive
subband structures of Figs. 1 and 2 are analyzed and compared.

2. OVERDETERMINED SUBBAND STRUCTURE WITH
CRITICAL SAMPLING

The critically sampled subband structure derived in [3] and illus-
trated in Fig. 1 presents cross filters between adjacents subbands
in order to cancel the aliasing among adjacents subbands. The
number of adaptive filters in an � channel structure is ������� ,
and each of these subfilters have 	�

����������������������� co-
efficients, where � � , � � and � � are the lengths of the unknown
system, analysis filters and synthesis filters, respectively. Denot-
ing ���! "��$#%� the 	'&)( vector containing the coefficients of the
direct and cross filters which generate the * th band output signal
and +,"��$#%� the 	-&.( vector containing the 	 most recent sam-
ples of the subband signal /0" of Fig. 1 at iteration # , the update
equation for the subfilters coefficients is�1�2 "��$#3�4(5�6
7���2 "��$#%�8�:9;�<+�"��$#=�?>@���$#%� (1)

for *A
CBED�(<D!F�F�FGDH� and IJ
K*���(<DH*JDL*M�C( , where>N�O�$#=�P
CQ0�R�$#S�:TA�;��U +�V�5W;X �$#=�Y�1�2 �<W;X2�$#=�� + V � �$#%�Y�A�2 �E�$#%�J�Z+ V�![PX �$#%�Y�A�2 �![PX!�$#=� (2)Q0�O�$#%� is the * th band decomposed desired signal, and T\
��� � �K� � ���]�]� corresponds to the delay introduced by the fil-
ter banks in the subband model.

2.1. Convergence Analysis

In system identification of an unknown system ^���_�� , the subband
desired signals Q0�R��_��`
Cab����_���^���_��c/:��_�� (before down-sampling
and without measurement noise) can be written as:deee
f
Qhg���_��Q X ��_��

...Q0i WjX ��_��

k lll
m 
Cn,op��_ i �Yq6o!r<��_ i �

deee
f

(_ WjX
..._ Wjs i WjXct

k lll
m /u��_�� (3)

where n�op��_�� is the type-1 polyphase matrix of the analysis bank
and q o2r ��_�� is the pseudo-circulant matrix formed by the type-1
polyphase components

� ^Gg���_��HD�F�F�FGDH^ i WjX ��_��Y� of ^���_�� , i.e.,

q o2r ��_��`

deee
f

^Gg<��_�� ^ X ��_v� F�F!Fw^ i W;X ��_v�_ WjX ^ji W;X ��_�� ^ g ��_v� F�F!Fw^ji WJx ��_v�
...

. . .
. . .

..._ WjX ^ X ��_v� _ W;X ^ x ��_��yF�F!F ^ g ��_v�

k lll
m (4)
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Fig. 1. Overdetermined adaptive subband structure with critical
sampling [3].

In order to exactly model an arbitrary FIR system, direct-path fil-
ters and cross-filters between each two subbands are required. De-
noting

� ��_�� the � &=� matrix containing the transfer functions
of such filters, the subband ouput signals are given bydeee

f
� g]��_��� X ��_��

...� i W;X ��_��

k lll
m 
 � ��_ i �?n o ��_ i �

deee
f

(_ WjX
..._ Wjs i WjXct

k lll
m /:��_v� (5)

From (4) and (6), for exact modeling of ^���_�� , the subfilters ���  � ��_v�
should be � ��_v�6
Cn,op��_��Yq6o2r5��_�����op��_�� (6)

with � o ��_�� being the type-2 polyphase matrix of the associated
perfect-reconstruction synthesis bank (i.e., n�o8��_v��� oJ��_v�6
	�p_ W�
 ).
Such subband modeling results in the introduction of an input-
output delay T (inherent to the filter banks) which is taken into
account by the adaptation algorithm of (2).

The decomposed desired signals (including now a measure-
ment noise �A��*G�$#=� ) can be expressed in terms of the optimal fil-
ters �
�  � ��_�� of the subband model as

Q � �$#
�:TA�]
�� + V g �$#%�hF!F�FP+ V i WjX �$#%��� � � ��� � �$#=� (7)

where
� � is the vector with the coefficients of the subfilters of the* th row of the matrix

� ��_�� of (6).
For the subsequent stochastic analysis, we use the “indepen-

dence theory” [5] and assume that the measurement noise and in-
put signal are uncorrelated. Substituting (2) and (7) in (1), taking
expected values of both sides of the resulting equation, and defin-
ing � V � �$#%�P
 U � V �2 �<W;X �$#=�;� V�2 � �$#=�;� V�2 �![PX �$#%��� , we obtain

>AU ���E�$# �C(2���8
 ���A�.9j�������?>AU �1�O�$#%�����Z9j������O�$#=� � � (8)

where

����

d
f � �5W;X? �<WjX�� �<W;X? �����<WjX? �![PX� �2 �<WjX � �2 � � �2 �![`X� ��[`X? �5W;X����![PX? �����![PX? �![PX

k
m (9)

�� � 

d
f � �<WjX? g ���<WjX? X F�F F����<W;X? i W;X� �! g � �2 X F�F F ���2 i W;X� �![PX? g ���![PX? X F�F F����![`X? i W;X

k
m (10)

with

� �2 " 
C>AU + � �$#=�?+ V" �$#=���8
Cn � � �!��n V" (11)

�"�!� is the � & � input-signal autocorrelation matrix and n � is
a 	 &0� matrix, with � 
C� � �Z��	 �.(2��� , whose first row has
the ��� coefficients of a � ��_�� followed by ��	 �C(5��� zeros, and
every following row is given by the previous one circularly shifted
to the right by � positions.

After convergence, >AU � � �$#C�.(2���8
C>AU � � �$#=���8
 � � , and,
from (8),

�1� 
	� WjX� �� � � � (12)

For white noise input and orthogonal filter banks it can be easily
shown that � �2 " 
$# , for *&%
 I , and � �! �u
(' x� � , and there-
fore, ����
)� � V �2 �5W;X � V �2 � � V �! �![PX � . Such result is also valid
for colored inputs when the stopband attenuations of the analysis
filters are large enough such that � �2 "+*&# for , *b�ZI-,/. ( . Also
from (8), we observe that the convergence in the mean of the * th
band adaptive coefficients is governed by the eigenvalue spread of
the matrix � � .

For lossless filter banks, the total MSE is given by

0 �$#%�`
 i W;X1
�!2 g >AU > x� �$#=��� (13)

Its minimum value (with the optimal coefficients � � ) is obtained
substituting (2) and (7) in the above equation, i.e.,

043 �651
 i WjX1�!2 g � � V �"7� � � �:� � V � �� � � � � � V � � � � � �b�8' x9 (14)

where

7� 

de
f � g  g F�F�F ��g  i W;X

...
. . .

...� i W;X? g F�F�F:� i W;X? i W;X
k l
m (15)

and ' x9 is the measurement noise variance.

3. NON-OVERDETERMINED SUBBAND STRUCTURE
WITH CRITICAL SAMPLING

The critically sampled subband structure of Fig. 2 was presented in
[4]. In its derivation, it was considered that non-adjacent filters of
the analysis bank had non-overlapping frequency responses. The
resulting structure also presents extra filters among the subbands,
but such filters are directly related to the direct-path filters, and do
not need to be adapted separately. The lengths of the subfilters; �R��_�� should be at least 	 
 ��� � �,� � ����� ��( .

Denoting �%�$#=� the �7	 &Z( vector containing all adaptive
coefficients, i.e.,

�%�$#=�P
 U<��g�V��$#=��� X V��$#%�=<><>< � i W;X V��$#=�/� V (16)

+4�2 "��$#%� the 	 &=( vector with the most recent 	 samples of the
subband signal /b�2 " of Fig. 2, and ?%�$#=� and @��$#%� the � &.(
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Fig. 2. Non-overdetermined adaptive subband structure with criti-
cal sampling [4].

vectors with the subband errors and desired signals, respectively,
at iteration # , the coefficient update equation in vector form is [4]

�%�$# �4(5�`
7�%�$#%�J� ��� �$#%��?=�$#%� (17)

where � 
 diag
� 9;g!����D?9 X ����D�F�F�FGD�9 i WjX ����� ,

� �$#%�P

deee
f
+�g  g +4g  X+ X? g + X? X + X? x

. . .
. . .

. . .+ i WjX? i W8x + i W;X? i W;X

k lll
m (18)

and

?=�$#%�`
	@��$#
�:TA�j� � V��$#=�Y�=�$#=� (19)

with T 
 ��� � �Z� � ���<�]� �:� .
3.1. Convergence Analysis

Applying the generalized subband decomposition [4] to the un-
known system, we can write

^���_��`
C_ 
 i � 7; g ��_ i �0F�F�F 7; i W;X ��_ i � � n o ��_ i �
deee
f

(_ W;X
..._ W;s i W;Xct

k lll
m

(20)

where

� 7; g]��_��0F�F�F 7; i W;X ��_�� � 
�� ^Gg<��_��bF F�F6^ i WjX ��_�� � ��op��_�� (21)

with ^��L��_v� and ��o8��_v� as defined in Section 2. Thus, denoting
7� the vector with the coefficients of 7; g���_v�HD F�F!FGD 7; i WjX ��_�� , the

subband desired signals can be written as

@��$#
�ZTA�`
 7� V �$#=� 7� ���:�$#%� (22)

where

7� �$#=�`

de
f +4g  g��$#=� F�F�F +�g  i W;X �$#=�

...
. . .

...+4i W;X? g �$#=� F�F�Fy+4i W;X? i W;X �$#%�
k l
m (23)

and �Z�$#=� contains the subband measurement errors.
Then, substituting (19) and (22) in (17) and taking expected

values of both sides of the resulting equation, we obtain

>AU �=�$# ��(5���J
 ���A� ��� �?>1U �=�$#%����� �
	� 7� (24)

where � 
S>AU � �$#%� � V �$#=��� and 	� 
S>AU � �$#%� 7� V �$#=��� . The
matrices � and 	� can be expressed in terms of the input signal
and of the analysis filters coefficients, since their submatrices are

>AU +��! "$+�V 3  5 �p
KnK�2 " �"�!�<nKV 3  5 (25)

where nK�2 " is an � &M	 matrix, with � 
K�<� � � (O���3��	C��(5� ,
formed as nK� of (11) but with the coefficients of aA�E��_��?a0"c��_�� .

From (24), the convergence rate of the mean adaptive coef-
ficients is determined by the eigenvalue ratio of the matrix ��� .
After convergence, >AU �%�$# �4(5���8
K>AU �%�$#=���8
 � , and

�S
 � W;X 	� 7� (26)

As the stopband attenuation of the analysis filters increases, 	� *� (since >1U + �  � + V �2 " � * # for , *0�
� ,�. ( and , IJ��� , . ( ) and,
from the above expression, � * 7� .

Considering lossless filter banks, using the optimal coefficients� and Eqs. (19) and (22) in (13), the minimum MSE for the struc-
ture of Fig. 2 is given by

0 3 �65 
 � V � � �:� 7� V 	� � � 7� V��� 7� �8' x9 (27)

where �� 
 >AU 7� �$#=� 7� V �$#%��� . For selective analysis filters such
that >AU �%�������/* 7� , we obtain

0 3 � 5 * 7� V�� 7� �8' x9 (28)

where

� 
 >AU � 7� �$#=�P� � �$#%�Y� � 7� �$#=�P� � V��$#=�Y��� (29)

From (28), the minimum MSE of the subband structure of Fig.
2 will be, in general, larger than the measurement noise variance' x9 , because of the residual aliasing not canceled in the simplified
structure. The corresponding increase in the minimum MSE is
related to the stopband attenuation of the analysis filters, since the
matrix � in (29) contains the cross-correlation matrices of non-
adjacent subband signals.

4. SIMULATION RESULTS

The identification of a length � � 
 (!��� FIR system (with coef-
ficients randomly generated) is considered, with both white and
colored input signals. The colored noise was produced by passing
a white noise sequence by a first-order IIR filter with pole located
at _ 
3B�< � . No measurement noise was added to the desired sig-
nal (i.e., ' x9 
 B ). The adaptive structures of Figs. 1 and 2 were
simulated with � 
�� subbands, employing cosine modulated fil-
ter banks with near-perfect reconstruction prototype filters [6] of



Table 1. Theoretical and experimental MSEs (in dB) for the
overdetermined subband structure of Fig. 1

white noise colored noise� � ( � ��� ( � ���0 3 � 5 �N�]� < � � ����� < � � �N�]� < �<� ����� < ���0�� �Lo �@� ��< � � ��� � < �5� �@� ��< ��� ����� < �v(

Table 2. Theoretical and experimental MSEs (in dB) for the non-
overdetermined subband structure of Fig. 2

white noise colored noise� � ( � ��� ( � ���0 3 � 5 �N��(�< �E( ����� < �<� �N� � < ��� ��� ��< � �0�� �Lo �N�<B�< �<� ��� � < �5B �N��(�< �]� ����� < � �

lengths � � 
 ( � and � � 
3��� . The theoretical minimum MSE
(
043 � 5 , Eq. (14)) as well as the experimental MSE (

0 � �Lo ) obtained
with the structure of Fig. 1 with the two prototype filters are given
in Table 1. The corresponding theoretical

0 3 � 5 (Eq. (28)) and0 � �Lo for the structure of Fig. 2 are given in Table 2. Figures 3 and
4 present the mean-square error (MSE) evolutions of the subband
structures of Figs. 1 and 2, respectively, for the colored input.
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Fig. 3. MSE evolution of the overdetermined subband structure of
Fig. 1 with colored input.

The eigenvalue spread of the corresponding theoretical correlation
matrices for the simulations of Figs. 3 and 4 are given in Table
3. We observe from Tables 1 and 2 and from Figs. 3 and 4 that
the theoretical mean-square errors are in good agreement with the
experimental values and, therefore, with some knowledge of the
input signal statistics, one can predict the final mean-square error
of the structures for a chosen filter bank. The convergence rates of
the subband algorithms can also be predicted from the analysis, as
shown in Table 3 for the experiments of Figs. 3 and 4.

0 50 100 150 200 250 300
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Iteration Number (x50)

M
S

E
 (

dB
)

Nh=16 

Nh=32 

Theoretical MSE 

Fig. 4. MSE evolution of the non-overdetermined subband struc-
ture of Fig. 2 with colored input.

Table 3. Eigenvalue spread of the corresponding correlation ma-
trices for the simulations of Fig. 3 and Fig. 4

Overdetermined Str. Non-overdet. Str.� � ( � �]� ( � ���� 3
	 � � � 3 �65 �<B�< ( � �v(�< ��� (!� < � � ( ��< ���

5. CONCLUSION

This paper provides an improved understanding of the convergence
properties of recently proposed subband adaptive algorithms with
critical sampling. Theoretical expressions for the mean coefficient
vector and minimum mean-square errors have been derived, with
the residual aliasing in the subband structures taken into account.
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