
)$67�0$5&+,1*�$1'�75$9(/7,0(�,0$*(6����1(,*+%285+22'�$3352$&+�

Regis Dargent1, Olivier Lavialle1,3, Bruno Orsoni2, Pierre Baylou1, Pierre Melchior2

�
(TXLSH�6LJQDO�,PDJH�±�/$3�805�&156��8QLYHUVLWp�%RUGHDX[�,���(16(,5%��

$Y��'X�'U�6FKZHLW]HU�%3�������������7DOHQFH�&HGH[�)UDQFH��7HO�������������������
�
(TXLSH�&URQH���/$3�805�&156�8QLYHUVLWp�%RUGHDX[�,���(16(,5%���

�����&UV�GH�OD�/LEHUDWLRQ��������7DOHQFH�&HGH[�)UDQFH��7HO�������������������
�
(1,7$�GH�%RUGHDX[���������*UDGLJQDQ�&HGH[�)UDQFH���

GDUJHQW#WVL�X�ERUGHDX[�IU�

$%675$&7�

�

We develop two approaches for performing accurate
traveltime in a 2D lattice. These methods are extensions of
the Fast Marching method and consist in considering the
8-connected neighbors to compute the solution of the
Eikonal equation. The interest of our approach is
demonstrated by comparing the results obtained with the
classical Fast Marching algorithm and with our methods
in the case of a simple approximation of the Euclidian
distance��
�

���,1752'8&7,21�

Accurate and fast traveltime computation is an important
task in image processing. It consists in finding the time
needed to reach a pixel starting from one or several initial
locations (called germs).
A particular case occurs when the time needed to cross a
pixel is the same everywhere in the image. Thus, finding
the traveltime is equivalent to compute the Euclidian
distance to the closest “germ”. The problem of using such
a method is the complexity of the algorithm. Moreover, it
is very difficult to take into account different speeds of
travel between pixels.
 A solution consists in simulating the evolution of an
interface with a speed normal to itself. This approach
leads to well known methods like Level Set methods [5]
and more recently, Fast Marching methods [6].
Applications of such methods in image processing
concern for instance image filtering and enhancement [1]
or Active contour models [2][3]. More generally, these
methods are also used in many other fields like path
planning in robotics [4].

Fast Marching method consists in solving the nonlinear
Eikonal equations:

 0F(x),in)()(>Ω=∇ [)[X (1)

where Ω is a domain in 5Q. X�[� represents the time of
arrival to point [, whereas)�[�!� is the time necessary to
cross the pixel [.

Typically, Ω corresponds to a 2D or 3D grid, with spacing
K. In this case, we can approximate each component of

the gradient ∇X with the finite difference:

 axis.-thi thealong
K

X
XL ∆

∆= (2)

In fact, this approximation can be evaluated at first order
by two different ways, using the positive or the negative
part of the axis:

() ()

() ()
K

K[X[X
X

K

K[X[X
X

L
L

L

L

∆
−−

≈
∆

+−
≈

−

+

 (3)

where KL ���� ��� «�� ��� K�� ��� «�� ��, the K term
corresponding to the ith component.
As the calculus of the traveltime is realized in a growing
way, we must have:

() ()
() () 0

0
 : thenand ,

≥
≥





−≥
+≥

−

+

L

L

L

L

X

X

K[X[X

K[X[X
 (4)

that is, the points used to calculate X�[� must have already
been calculated. Then we can precise the definition:

() ()

() ()







∆
−−

≈








∆
+−

≈

−

+

0,

0,

K

K[X[X
0D[X

K

K[X[X
0D[X

L
L

L
L

 (5)

Finally, the choice of XL
� or XL

� comes from the idea that to
get the better precision, X�[� has to be calculated from the

points that are the closest to the “germs”, i.e. the
minimum of X�[�KL� and X�[�KL�. So we get the formula:

() () () ()







∆
−−

∆
+−

≈ 0,,
K

K[X[X

K

K[X[X
0D[X LL

L (6)

By this way, we can calculate the traveltime to a point [
from the knowledge of the traveltimes of the neighbors of
[.
Practically, the computation of the entire image is based
on the use of a list of points, WULDO, sorted by growing
traveltime. This list represents the wavefront of the
propagation of the information. Initially, all the points of
the image are set to have an infinite traveltime, unless the
germs, which get a traveltime of 0, and are inserted in
WULDO. At each step of the algorithm, the head of WULDO (the
point with the less traveltime, i.e. the first point reached
by the wavefront in its expansion) is extracted, and the
traveltime of all of its neighbors is computed. Fig. 1a
shows the shape of the neighborhood. If necessary, the
traveltime associated with these points is updated, and in
this case, they are inserted in WULDO� (which is, naturally,
sorted anew). The algorithm stops when WULDO contains no
more point, that is, when all the points of the image have
get their final value.

� �D���³6WUDLJKW´� �E���³'LDJRQDO´�

� QHLJKERUKRRG�� QHLJKERUKRRG��

)LJ����1HLJKERUKRRG�RI�8�[��\��LQ�WKH�FDVH�RI�D��'�JULG�

The key point of this method resides in the sorting of the
WULDO list (usually with a heapsort), which reduces the
complexity of the algorithm. For example, in the case of a
three-dimensional grid with 1 points in each direction, we
get a complexity in 2�1�ORJ1�.

Nevertheless, a drawback of the Fast Marching method is
the bias in the estimation of the traveltime: it is perfect in
the direction of the axes, but relatively weak in the 45°
and 135° directions. This can be shown in the case of a
uniform speed of travel on the image. Then the desired
solution for each pixel is the Euclidian distance to the
closest germ. Fig. 2 shows the difference between the
image of Euclidian distance and the one obtained with the
Fast Marching method, with a unique germ in the center
of the image.

)LJ����(VWLPDWLRQ�HUURU���

�

In this paper, we develop two methods to improve the
precision of the results, while keeping the global structure
of the algorithm. The section 2 presents the principle of
the two methods, while the section 3 shows some
experimental results and comparisons with the original
method.

���,03529(0(176�21�7+(�)$67�0$5&+,1*�

The Fast Marching leads to a lack of precision along the
two diagonals. The main idea of the two methods exposed
here is the use of the “diagonal neighborhood” to correct
the estimation of the traveltime.
The first method, developed for the 2D case is explained
in subsection 2.1. It simply improves the quality of the
estimation on the two diagonals, while keeping the
precision along the horizontal and vertical axes. The
second one, presented in subsection 2.2, implements a
somehow different, but better, way to calculate the
traveltime.

�����'RXEOH���QHLJKERXUKRRG����1��)DVW�0DUFKLQJ�

The first way of using the whole 8-neighbourhood (8-N)
is based on the observation that the points of the
“diagonal” neighborhood also form a grid, with axes

rotated by 45°, and with a spacing of 2K∆ .
The main idea was then to calculate the traveltime to a
point using both, but separately, the “straight” and the
“diagonal” neighborhood, as shown in Fig. 3. So we get
two possible values for the traveltime, 8VWUDLJKW and
8GLDJRQDO.

U(x,y)

U(x- K�\� K�

U(x- K�\- K�

8�[� K�\� K�

U(x+ K�\- K�

8�[�\� K�

U(x,y) U(x- K�\�

U(x,y- K�

8�[� K�\�

)LJ����)XQFWLRQDO�VFKHPD�RI�GRXEOH���1�)DVW�0DUFKLQJ�

The choice of the best candidate is based on the fact that
the standard Fast Marching always overestimates the
traveltime. The value which will be the closest to the truth
is then the minimum of 8VWUDLJKW and 8GLDJRQDO.

�������9�)DVW�0DUFKLQJ�

In the Fast Marching method described in section 1, the
computation of X�[� is obtained by selecting the best
neighbor on each axis (i.e. the pixel with the minimal
traveltime). (6) can be rewritten:

() ()
() ()





≥−−

≥+−

0
or

0
 if

L

L

K[X[X

K[X[X

 ,

() () ()()

K

K[XK[X0LQ[X
X LL
L ∆

−+−≈ ,

Otherwise,

 0≈LX

(7)

The double 4-neighbourhood method proposed in the
previous subsection is based on the same principle as it is
only an extension taking into account the diagonal axis.

Here, we propose to use the whole 8-neighbourhood to
compute an approximation of the gradient based on the
general formula:

),()()().(, [XK[X[X'K[XK
K

−+≈=∇∀
&&&

& (8)

where)([X'
K
& is the derivative of X at point [, in the

direction of a vector K
&

.
To solve (8) we need to obtain the value of Q��
unknowns (X�[� and the Q components of ∇X�[�). (1)
provides us with one equation, thus we have to introduce
Q other equations by considering the values of the
neighbors of [.
 In the 2D case, the idea is to select the “best” point [� in
the 8-neighbourhood of the current point [. This best
point is the one that would give the smallest value for
X�[�, if it were the only point to use in the calculus.
Eventually, to obtain additional information on the
gradient, we take into account two other points, [� and [�,
which are the neighbors of both [and [�, as shown in Fig.
4.

x� x� x� � x� x� [��

x� [� [�� � x� [� [��

x� [�� [�� � x� x� [��

)LJ����7ZR�SRVVLEOH�UHSDUWLWLRQV�RI�WKH�LQWHUHVWLQJ�

QHLJKERUKRRG�RI�[�

Practically, the gradient components are then defined by:



















−
−
−
−

≈∇

21

21

0

0

)()(

)()(

)(

[[

[X[X

[[

[X[X

[X , (9)

Finally the value of X�[� is obtained quite easily by the
resolution of the equation (1).

���(;3(5,0(17$/�5(68/76�

We present here some comparative results obtained with
the different methods. In order to evaluate the quality of
the resulting images, we considered the 2D problem, with
a uniform cost of displacement (i.e. x ,)(∀= &[)). A

unique germ was placed in the center of the traveltime
images and the results of the computing have been
compared to the theoretical result, which is the distance
image obtained with the Euclidian distance.
The Fig.5 shows the difference between the Euclidian
distance and the traveltime returned by the different Fast
Marching algorithms. It highlights the directions in which
the error is the most important. In particular, it shows how
the calculus along the diagonal directions has been
improved; Fig. 6 shows more precisely in which
proportions the improvements vary according to the
direction (the curve has been traced at a distance of 100
pixels of the germs).

U1
U

U3

U2

U4

K

K K

K

s6WUDLJKWs�QHLJKERUKRRG��

8 ��������� 	�
��

U1
U

U2

U4

¥� K

¥� K ¥� K

¥� K

U3

U1

U4

U

U2

U3

K

K

K K

s'LDJRQDOs�QHLJKERUKRRG��

8
 � ��	��������

8

)LJ����&XUYH�RI�HUURU�YDULDWLRQ�DFFRUGLQJ�WR�T��U �����

)LJ����(UURU�YDULDWLRQ�DFFRUGLQJ�WR�WKH�GLVWDQFH�WR�WKH�

JHUPV�IRU�WKUHH�PHWKRGV�RI�)DVW�0DUFKLQJ���

�D��6WDQGDUG��E��GRXEOH���1��F����1�

Another way to estimate the improvements given by the
two methods consists in observing how the difference
between the Euclidian distance and the Fast Marching

evolves according to the distance to the germs. The
resulting curve is given in Fig. 7.

���&21&/86,216�

The new approaches proposed in this paper significantly
increase the performance of the Fast Marching algorithm
in the places where it is the weakest, which are in the
diagonal directions. To do this, they take into account not
only the 4-neighbourhood of each point to compute, but
its whole 8-neighbourhood.
Further works will be devoted to the 3D extension of our
methods. As proposed by Sethian in a recent work [7], we
will also extend the neighbourhood of the pixels to
compute the traveltime with a greater precision.

���5()(5(1&(6�

[1] L. Alvarez, P.L. Lions, J. M. Morel, ”Image selective
smoothing and edge detection by non-linear diffusion”, 6,$0�-�
1XPHULFDO�$QDO\VLV, 29, pp 845-867, 1992.
[2] L.D. Cohen, R. Kimmel "Global Minimum for Active
Contour Models: A Minimal Path Approach", ,QWHU�� -RXUQDO�RI�
&RPSXWHU�9LVLRQ, Vol. 24, n°1, pp. 57-78, 1997.
[3] O. Lavialle, F. Angella, and P. Baylou, “Extension of the
Minimal Path Searching for Structure Recovery", ICIP’99,
Kobe, Japan, Vol. 4 pp. 405-409, 1999.
[4] P. Melchior, B. Orsoni, O. Lavialle, A. Oustaloup "The
CRONE toolbox for Matlab: Fractional Path Planning Design in
Robotics", ,(((� ,QWHUQ� :RUNVKRS� RQ� 5RERW� DQG� +XPDQ�
&RPPXQLFDWLRQ, 10, pp. 534-540, 2001.
[5] S. Osher, J.A. Sethian, “Fronts Propagating with Curvature-
Dependent Speed: Algorithms Based on Hamilton-Jacobi
Formulations”, -RXUQDO�RI�&RPS��3K\VLFV, 79, pp.12-49, 1988.
[6] J.A. Sethian, “Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational Geometry, Fluid
Mechanics, Computer Vision, and Materials Science”,
Cambridge University Press, Cambridge, UK, 1999.
[7] J.A. Sethian, “Fast Marching Methods”, 6,$0�5HYLHZ, Vol.
41, No.2, pp. 199-235, 1999.

�D�� �E�� �F��

)LJ����(UURU�YDULDWLRQ�DFFRUGLQJ�WR�WKH�GLUHFWLRQ��

EODFN�PHDQV�QR�HUURU��WKH�VDPH�SDOHWWH�RI�JUD\�OHYHOV�LV�XVHG�IRU�DOO�LPDJHV��

6WDQGDUG�)DVW�0DUFKLQJ���E��'RXEOH���1���F����1�)DVW�0DUFKLQJ�
�

(a)

(b)

(c)

0° 45° 90°

() ()∑ −
θ

[X[G

U

0°

90°

U
θ

