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We develop two approaches for performing accurate 
traveltime in a 2D lattice. These methods are extensions of 
the Fast Marching method and consist in considering the 
8-connected neighbors to compute the solution of the 
Eikonal equation. The interest of our approach is 
demonstrated by comparing the results obtained with the 
classical Fast Marching algorithm and with our methods 
in the case of a simple approximation of the Euclidian 
distance��
�
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Accurate and fast traveltime computation is an important 
task in image processing. It consists in finding the time 
needed to reach a pixel starting from one or several initial 
locations (called germs). 
A particular case occurs when the time needed to cross a 
pixel is the same everywhere in the image. Thus, finding 
the traveltime is equivalent to compute the Euclidian 
distance to the closest “germ”. The problem of using such 
a method is the complexity of the algorithm. Moreover, it 
is very difficult to take into account different speeds of 
travel between pixels. 
 A solution consists in simulating the evolution of an 
interface with a speed normal to itself. This approach 
leads to well known methods like Level Set methods [5] 
and more recently, Fast Marching methods [6]. 
Applications of such methods in image processing 
concern for instance image filtering and enhancement [1] 
or Active contour models [2][3]. More generally, these 
methods are also used in many other fields like path 
planning in robotics [4]. 
 
Fast Marching method consists in solving the nonlinear 
Eikonal equations: 
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where Ω is a domain in 5Q. X�[� represents the time of 
arrival to point [, whereas )�[�!� is the time necessary to 
cross the pixel [. 
 
Typically, Ω corresponds to a 2D or 3D grid, with spacing 
K. In this case, we can approximate each component of 

the gradient ∇X with the finite difference: 
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In fact, this approximation can be evaluated at first order 
by two different ways, using the positive or the negative 
part of the axis: 
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where KL ���� ��� «�� ��� K�� ��� «�� ��, the K term 
corresponding to the ith component. 
As the calculus of the traveltime is realized in a growing 
way, we must have: 
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that is, the points used to calculate X�[� must have already 
been calculated. Then we can precise the definition: 
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Finally, the choice of XL
� or XL

� comes from the idea that to 
get the better precision, X�[� has to be calculated from the 



points that are the closest to the “germs”, i.e. the 
minimum of X�[�KL� and X�[�KL�. So we get the formula: 
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By this way, we can calculate the traveltime to a point [ 
from the knowledge of the traveltimes of the neighbors of 
[.  
Practically, the computation of the entire image is based 
on the use of a list of points, WULDO, sorted by growing 
traveltime. This list represents the wavefront of the 
propagation of the information. Initially, all the points of 
the image are set to have an infinite traveltime, unless the 
germs, which get a traveltime of 0, and are inserted in 
WULDO. At each step of the algorithm, the head of WULDO (the 
point with the less traveltime, i.e. the first point reached 
by the wavefront in its expansion) is extracted, and the 
traveltime of all of its neighbors is computed. Fig. 1a 
shows the shape of the neighborhood. If necessary, the 
traveltime associated with these points is updated, and in 
this case, they are inserted in WULDO� (which is, naturally, 
sorted anew). The algorithm stops when WULDO contains no 
more point, that is, when all the points of the image have 
get their final value. 
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The key point of this method resides in the sorting of the 
WULDO list (usually with a heapsort), which reduces the 
complexity of the algorithm. For example, in the case of a 
three-dimensional grid with 1 points in each direction, we 
get a complexity in 2�1�ORJ1�. 
 
Nevertheless, a drawback of the Fast Marching method is 
the bias in the estimation of the traveltime: it is perfect in 
the direction of the axes, but relatively weak in the 45° 
and 135° directions. This can be shown in the case of a 
uniform speed of travel on the image. Then the desired 
solution for each pixel is the Euclidian distance to the 
closest germ. Fig. 2 shows the difference between the 
image of Euclidian distance and the one obtained with the 
Fast Marching method, with a unique germ in the center 
of the image. 
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In this paper, we develop two methods to improve the 
precision of the results, while keeping the global structure 
of the algorithm. The section 2 presents the principle of 
the two methods, while the section 3 shows some 
experimental results and comparisons with the original 
method. 
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The Fast Marching leads to a lack of precision along the 
two diagonals. The main idea of the two methods exposed 
here is the use of the “diagonal neighborhood” to correct 
the estimation of the traveltime. 
The first method, developed for the 2D case is explained 
in subsection 2.1. It simply improves the quality of the 
estimation on the two diagonals, while keeping the 
precision along the horizontal and vertical axes. The 
second one, presented in subsection 2.2, implements a 
somehow different, but better, way to calculate the 
traveltime. 
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The first way of using the whole 8-neighbourhood (8-N) 
is based on the observation that the points of the 
“diagonal” neighborhood also form a grid, with axes 

rotated by 45°, and with a spacing of 2K∆ . 
The main idea was then to calculate the traveltime to a 
point using both, but separately, the “straight” and the 
“diagonal” neighborhood, as shown in Fig. 3. So we get 
two possible values for the traveltime, 8VWUDLJKW and 
8GLDJRQDO. 
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The choice of the best candidate is based on the fact that 
the standard Fast Marching always overestimates the 
traveltime. The value which will be the closest to the truth 
is then the minimum of 8VWUDLJKW and 8GLDJRQDO. 
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In the Fast Marching method described in section 1, the 
computation of X�[� is obtained by selecting the best 
neighbor on each axis (i.e. the pixel with the minimal 
traveltime). (6) can be rewritten: 
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Otherwise,  

 0≈LX  

(7) 

The double 4-neighbourhood method proposed in the 
previous subsection is based on the same principle as it is 
only an extension taking into account the diagonal axis. 
 
Here, we propose to use the whole 8-neighbourhood  to 
compute an approximation of the gradient based on the 
general formula: 
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where )([X'
K
& is the derivative of X at point [, in the 

direction of a vector K
&

.  
To solve (8) we need to obtain the value of Q�� 
unknowns (X�[� and the Q components of ∇X�[�). (1) 
provides us with one equation, thus we have to introduce 
Q other equations by considering the values of the 
neighbors of [. 
 In the 2D case, the idea is to select the “best” point [� in 
the 8-neighbourhood of the current point [. This best 
point is the one that would give the smallest value for 
X�[�, if it were the only point to use in the calculus. 
Eventually, to obtain additional information on the 
gradient, we take into account two other points, [� and [�, 
which are the neighbors of both [ and [�, as shown in Fig. 
4. 
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Practically, the gradient components are then defined by: 
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Finally the value of X�[� is obtained quite easily by the 
resolution of the equation (1). 
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We present here some comparative results obtained with 
the different methods. In order to evaluate the quality of 
the resulting images, we considered the 2D problem, with 
a uniform cost of displacement (i.e. x  ,)( ∀= &[) ). A 

unique germ was placed in the center of the traveltime 
images and the results of the computing have been 
compared to the theoretical result, which is the distance 
image obtained with the Euclidian distance.  
The Fig.5 shows the difference between the Euclidian 
distance and the traveltime returned by the different Fast 
Marching algorithms. It highlights the directions in which 
the error is the most important. In particular, it shows how 
the calculus along the diagonal directions has been 
improved; Fig. 6 shows more precisely in which 
proportions the improvements vary according to the 
direction (the curve has been traced at a distance of 100 
pixels of the germs). 
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Another way to estimate the improvements given by the 
two methods consists in observing how the difference 
between the Euclidian distance and the Fast Marching 

evolves according to the distance to the germs. The 
resulting curve is given in Fig. 7. 
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The new approaches proposed in this paper significantly 
increase the performance of the Fast Marching algorithm 
in the places where it is the weakest, which are in the 
diagonal directions. To do this, they take into account not 
only the 4-neighbourhood of each point to compute, but 
its whole 8-neighbourhood. 
Further works will be devoted to the 3D extension of our 
methods. As proposed by Sethian in a recent work [7], we 
will also extend the neighbourhood of the pixels to 
compute the traveltime with a greater precision. 
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