A NEW TWO-DIMENSIONAL FAST ADAPTIVE FILTER BASED ON
THE CHANDRASEKHAR ALGORITHM

Mounir Sayadi, Farhat Fnaiech, Ahmed Mathlouthi, Abdelkader Chaari and Mohamed Najind”

CEREP, ESSTT, Av. TahaHussein, 1008, Tunis, Tunisia,
Email : mounir.sayadi @ipeim.rnu.tn , Farhat.Fnaiech@esstt.rnu.tn

) Equipe Signal Image, UMR LAP, ENSEIRB, BP.99, 33402, Taence Cedex, France
Email : ngim@td.u-bordeaux.fr

ABSTRACT

In this paper, we present a new fast algorithm for two-
dimensiona (2-D) linear adaptive filtering using the fast
Chandrasekhar equations. Using the analogy between the
multichanndl linear model and the 2D one, we transform an
image into multichannel sequence and we extend the fast
Chandrasekhar adaptive multichannel filtering agorithm to
the 2-D case i.e. image filtering. The performance of the new
2-D adaptive filter istested by using this filter to estimate the
coefficients of a2D Moving Average (2-D MA) model of an
unknown system. Furthermore, an application on adaptive
noise cancellation of images is proposed throw a 2-D
adaptive noise canceller based on the 2D Chandrasekhar
fast algorithm. Simulation results prove the superiority of the
new 2D Chandrasekhar filter comparing to similar
approachesfor image model identification.

1. INTRODUCTION

In the framework of image filtering, several adaptive
algorithms used for the recursive estimation of the 2-D model
coefficients have been proposed in [3][9][10][11]. A 2D
Least Mean Square (2-D LMS) adaptive agorithm was
proposed for the first ime in [3] and applied to adaptive
system identification and image enhancement. Furthermore, a
2-D lattice LM S adaptive agorithm was proposed in [9]- [11].
This algorithm was used in image restoration applications
and has given a successful results in terms of signal to noise
ratio improvement. A significant amount of research has been
reported on developing fast adaptive algorithm for the 2-D
filtering. In [8], a 2-D Fast Recursive Least Square (2-D FRLS)
transversal algorithm is proposed by Sequira et al.
Furthermore, a 2D Fast Lattice RLS (2-D FLRLS) adaptive
algorithm is proposed in [4]. It updates the filter coefficients
in growing-order form with alinear computational complexity
and uses the geometrical approaches of vector space and
orthogonal projection to solvethe 2-D prediction problem.

In the other hand, one of the approaches to decrease the
computation cost of the adaptive filtering agorithms is the
use of the Chandrasekhar factorization techniques. It isafast
dternative to the Kalman filter and can be efficiently applied
if the state-space modd is time-invariant [5][6]. The strength
of this approach derives from the fact that it avoids the
resolution of the standard Riccati equation. The derivation of
fast adaptive algorithms based on Chandrasekhar fast

equations using a state space model was presented in [1] and
[2] for MA and ARMA linear filtering. It has been extended
to the multichannel linear adaptive filtering in [6] and to the
non linear filtering in[7].

In the present paper, we exend the use of the fast
Chandrasekhar multichannel adaptive algorithm [6] to image
filtering. By transforming a 2D signal to a multichannel
sequence, and transforming a 2-D MA linear filter model to a
multichannel one, we derive a new fast adaptive algorithm
based on the Chandraskhar equations for 2-D linear filtering.

2. TRANSFORMATION OF THE 2-D MODEL TOA
MULTICHANNEL M ODEL

In the case of a quarter-plane support of order (p,q), (Figure
1), the output y of a2-D MA (or Finite Impulsional Response
HR) stationary linear filter is given by the following

relationship:
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Yo, represents the value of a pixel of theimage y at linen
and column r, and @ ; are the 2D MA transversal filter

coefficients. The sequences {Xm} and {Vm} are the 2D
random signal input and the additive noise, respectively.
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Figure 1: A Quarter-plane 2-D model
Let consider y asquare image of size (L" L). To transform the
2-D signal {ym} into a multichannel one of M channels, we

propose to scan the rows of the 2-D signal by a set M mono-
dimensiona (1-D) sequences defined asfollow:
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Thus, each sequence u® can denote the input signal of the
i™ channel of amultichanne! linear FIR filter.

Let now transform the 2D linear filter given by eguation (1)
to the following multichannel filter [6]:
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In this model, a linear scaning index k is introduced as
k=r+L.(n-1). Thetotal number of channelsM is chosen equal
to p. Theindex i is the channel order, u™ denotes the input
signal of the i"™ channel, and N; is the dimension of the
transversal channels chosen equal to g. The coefficient

vector for the i channel is given by Q(i):[bﬂ‘i)b(') ..... bl(')]

A multichanne filter coefficient b have to estimate to the
2D MA filter coefficients &, ; .

An equivalent state-space model of the multichanne filter
can be easily written as. [2][6]
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Here, Z is an extended data vector of dimension

p=Mm+n- M, where (N=N;+..4+Ny) is the total

number of coefficients and mis the index corresponding to
the last input samples available,
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and Q, isaparameter vector of augmented dimension p:
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where Q is a zero vector of size i. The modd (3) represents a
time-invariant state-space system since the matrix D and the
vector Z are constant.

3. THEFAST CHANDRASEKHAR ALGORITHM
Taking into account the state-space model (3), the estimate of
the parameter vector Q, may be performed by the standard
Kaman filter which yields:

U U 1 . U
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where the Kalman gain K, and the innovations covariance
R, are computed by :
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The Riccati difference equation may be obtained from
equation (8) by replacing the Kalman gain and the innovation
covariance by their respective expressions (6) and (7). In
[1][2] and [6], the Chandrasekhar factorization technique is
applied to decrease the computational complexity of the
Kamanfilter. Theterm P, _, isreplaced by afactorized form
of the covariance matrix increments
dP = Pyi1- Pk-]/k-ZZ(Lk-le-lLtk-l)-

Accordingly, a multichannel Chandrasekhar fast algorithm of
reduced dimension were proposed in [6]. We give a summary

of the steps of this algorithm in Table 1. The computational
complexity of the reduced algorithm depends on a.n rather

then n’. (aistherank of theincrementd B, = B, - P,,).

For more details about the derivation of the algorithm, the
reader isreferred to [6].

Equation Dimension
Transform the 2-D signal X, into amultichannel one:
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Table 1: Steps of the fast Chandrasekhar multichannel
agorithm.




Thealgorithm isinitialized with the following relations:
fori=1.M, Ki =0y, and R=S 2.

0"k isan (i,k) matrix whose elements are zeros. Therank a, is
equal to 2.M.

By defining at pinning vector of length p:
rh= [Oil_l 1 Otp_i] , theinitiaizationof M, and S are
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si2 isthe variance of the i"" channel coefficients. Theinitia
values of the channel coefficient vectors are set to zero,
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namely, for i=1.M, bijs=0y, .
4. SIMULATION RESULTS
Experiment 1: 2D MA modd identification

The purpose of this exampleisto illustrate the performance
of the proposed 2D Chandrasekhar fast adaptive agorithm
for alinear 2D MA model identification following the block
diagram of Figure 2. The desired 2-D MA filter output is:
Sir= -0.29 .)Q’]—Z,r—2+0.68. Xn—2,r—l'0. 37.Xn—2,r
+0.69.Xn_1yr_2 -1.68. Xn—l,r—1+1-1- Xn-1,r
'0.38.Xn,r-2+1.12.Xn,r-1+Vn,r

The sequences {Xm} and {Vm} are the 2D random signal

input and the additive gaussian noise of variance Sf,
respectively.
The signal-to-noiseratio isdefined as:
2
SNR(dB)leIogS—S2 where s 2 is the variance of the
s

v

desired filter output.
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Figure 2: Block diagram of the MA model adaptive
identification
We apply the new 2-D fast Chandrasekhar adaptive filter with
3 channelsto estimate the desired 2-D filter coefficients.
The performance criterion chosen is the norm of the
coefficient error vectors defined as:
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coefficient of the desired filter of index j,i.
For adesired image S of 20" 20 pixels, Figure 3 illustrates the
evolution of the coefficient error norm Er (dB) when the SNR
isequal to 20 dB. We subplot in Figure 3 the coefficient error
norms of the 2D normaized LMS dgorithm [3] and the 2-D
FLRLS agorithm [4]. The coefficient error norm of the new
Chandrasekhar agorithm is smaler than the one of both

other algorithms.
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Figure 3: Norm of coefficient-error vector for the 2-D fast
Chandrasekhar, 2-D LMS and 2-D FLRL S algorithms.

Experiment 2: 2-D Adaptive noise cancelation
The purpose of this experiment is to illustrate the
performance of the proposed 2-D Chandrasekhar fast
adaptive algorithm in additive noise cancellation using the
block diagram of Widrow's adaptive noise canceller [12]
(Figure 4).
The relationship between the additive noise y and the
reference noiss x is given by:
Ynr= 0.1%2,r210.2.%2,-1+0.5. %02, +0.2.Xp 1,2
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Figure 4: Block diagram of the Widrow's adaptive noise
canceller.

The signal-to-noise ratio of the corrupted image is defined as:
10l og% and the SNR of the restored image is defined

var(e)

var(e-v)
the signal x.
Figure 5 shows the original image v of the bridge (256" 256
pixels) and the corrupted image with a gaussian white noise
(SNR 4.2dB). The restored image using the 2D normdlized
LMSfilter has an SNR 9.3dB, while the restored image using
the new 2D Chandrasekhar filter provides a high SNR of
20.9dB. The gain is about 16.7 dB, which proves the
superiority of the proposed Chandrasekhar filter for image
filtering.

as 10lo , where var(x) notes the variance value of

5 CONCLUDING REMARKS

In this paper, we have presented a new fast agorithmfor
two-dimensional (2D) linear adaptive filtering using the
Chandrasekhar equations. This algorithm is based on the
analogy between the multichannel linear model and the 2-D
one. The new 2D adaptive filter provides an satisfactory
performance in 2D MA Model identification and in 2D
adaptive noise cancellation. More works have to be done to
generalize this agorithm to the case of 2D Auto-regressive
(AR) filtering and to use it for practical application such as
texture characterization.
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