
A Renyi entropy convolution inequality with application

J.-F. Bercher (1,2) and C. Vignat (1)

(1) Laboratoire Systèmes de Communications

Université de Marne la Vallée and ENST URA 820

93 166 Noisy-le-Grand, FRANCE

vignat@univ-mlv.fr

(2) Laboratoire Signaux et Télécoms,

Groupe ESIEE

93 162 Noisy-le-Grand, FRANCE

jf.bercher@esiee.fr

ABSTRACT
We present a convolution inequality for Renyi’s entropies.
An example of application is given in the context of blind
deconvolution: an optimization procedure based on the in-
equality for the quadratic entropy is presented and illustrated.

1 INTRODUCTION

Since the pioneering work by Shannon [1], entropy appears
as an interesting tool in many areas of data processing.
Donoho, in his paper [4], noticed that entropy based ap-
proaches may be valuable for deconvolution of real seismic
data. However, the use of Shannon entropy raises the dif-
ficult problem of its estimation and analytical manipulation.
Some attempts and comparisons can be found in [2]. Hence,
this entropy is not amenable to basic estimation methods. In
1953, Renyi introduced a wider class of entropies kwown as
Renyi entropies, and defined as

Hr(X) =
1

1 − r
log

∫
f r

X(x)dx,

wherer is real positive. In the special caser = 1, the Renyi
entropy reduces to Shannon entropy:

H1(X) = −
∫

fX(x) log fX(x)dx.

These functionals share the major properties of Shannon’s
entropy since they were obtained by extending one of the
fundating postulates of the notion of entropy. Moreover, at
least in the caser = 2, as remarked in [8], the Renyi en-
tropy can be analytically expressed when the underlying law
fX(x) is estimated using a kernel estimate (for instance using
a rectangular window in [8], or a gaussian kernel in [9]): this
makes its use attractive in a real context. However, until now,
these generalized entropies were used in a restricted number
of areas such as database retrieval and image processing.

In this paper, we show that a convolution inequality on the
Shannon entropy (the entropy power inequality) can also be
expressed for the Renyi class of entropies, based on the ex-
tended Young’s inequality. The outline of this paper is the
following: in the first part, we derive an original convolution
inequality in the case of Renyi entropies and characterize the
case of equality. In a second part, we show that this inequal-
ity can be applied in a context of blind deconvolution.

2 ENTROPIC INEQUALITIES

2.1 Shannon case
In the case of Shannon entropy, convolution of two indepen-
dent random variablesX andY leads to the entropy power
inequality, first stated by Shannon [1, Theorem 15 and Ap-
pendix 6], see also [5]:
Entropy power inequality: if X and Y are two independent
random variables with entropies H1(X) and H1(Y ), then

e2H1(X+Y ) ≥ e2H1(X) + e2H1(Y ),

with equality if and only if X and Y are gaussian variables,
or one of them is deterministic. This inequality has been ex-
tended to the multivariate case in [3].

The extension of such inequality to the general Renyi en-
tropies (i.e.r �= 1) remains an open problem. We give here
an alternate inequality for the entropy of convolved variables,
derived from the extended Young’s inequality.

2.2 Entropic Young’s inequality
The extended Young’s inequality [6] states as follows:

Theorem 1 Let p, q, r > 0 satisfy 1/p + 1/q = 1 + 1/r,
and let f ∈ Lp

(
RN

)
and g ∈ Lq

(
RN

)
be non-negative

functions. Let also Ct =
√

t1/t

|t′|1/t′ .

If p, q, r ≥ 1 : ‖f ∗ g‖r ≤
(
CpCq

Cr

)N

‖f‖p ‖g‖q (1)

If p, q, r ≤ 1 : ‖f ∗ g‖r ≥
(
CpCq

Cr

)N

‖f‖p ‖g‖q (2)

Moreover, whenN = 1 andp, q �= 1, there is equality in
(1) or (2) if and only iff (x) = exp

(− |p′|x2
)

andg (x) =
exp

(− |q′|x2
)
, with 1/p+ 1/p′ = 1/q + 1/q′ = 1.

In the case of the sum of two independent random vectors,
takingr = p andq = 1 and noting that||g||1 = 1, we then
obtain,

Hr(X + Y ) ≥ Hr(X),

and also, exchangingX andY ,

Hr(X + Y ) ≥ Hr(Y ), (3)
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so that finally

Hr(X + Y ) ≥ max(Hr(X), Hr(Y )). (4)

The case of equality is more intricate and happens if and
only if X or Y is a deterministic vector [6, 7].

2.3 Case of filtered data
In many applications, available data result from a mixture.
For instance, consider a filter with impulse responsef and
an independent identically distributed (iid) inputX(n). Its
output isZ(n) =

∑
i fiX(n− i).

Let us first consider the case of Shannon entropy: the
classical result on the entropy of rescaled variables, that is
H1(aX) = H1(X) + log |a|, and the assumption of station-
arity give

H1(fiX(n− i)) = H1(X(n− i)) + log |fi|
= H1(X) + log |fi|. (5)

Now, the entropy power inequality gives

e2H1(Z) ≥
∑

i

e2H1(X)+2 log |fi| = e2H1(X)
∑

i

|fi|2,

or equivalently,

H1(Z) ≥ H1(X) +
1
2

log
∑

i

|fi|2, (6)

with equality if and only if eitherX(n) is gaussian or if
Z(n) = X(n − k), for somek, that is, the filtering oper-
ation is a pure delay.

Let us now consider the Renyi case. The scaling property
is unchanged so that (5) remains true. Then, from inequality
(3), we deduce

Hr(Z) ≥ Hr(X) +
1
2

log |fi|2, ∀i (7)

with equality if and only the filter is a pure delay.
Observe that this last relation still holds in the multivariate

case, whereX(n) is a sequence of iid vectors (not necessar-
ily with independent components) and where|f i| should be
understood as the absolute value of the determinant of matrix
coefficientfi.

In the Shannon case, inequality (6) amounts to the well
known result that the linear transformation of a random i.i.d.
sequence increases its entropy, under a variance preserv-
ing constraint||f ||2 = 1. Inequality (7) shows that the
same result holds in Renyi’s case, but under the constraint
||f ||∞ = maxi|fi| = 1.

In the following section, we show how this tool can be
applied to the problem of blind MIMO deconvolution.

3 APPLICATION TO BLIND MIMO DECONVOLU-
TION

3.1 Model and principle
The problem of blind deconvolution consists in recovering
the i.i.d. inputX(n) and possibly the parameters of a filter
G from the sole observation of its outputY (n).

Y(n) H
Z(n)X(n) G

Figure 1: Blind deconvolution setup.

Here,X(n) andY (n) are respectivelyp × 1 andq × 1
random vectors, withq > p. Let us also denote byfk the
Lf samples (p×p) of the impulse response of the compound
filter, fk = [h ∗ g]k.

According to the last remark of section 2.3, the entropy of
the outputZ(n) can not be lower than the entropy ofX(n)
provided that either||f ||2 = 1 (Shannon) or||f ||∞ = 1
(Renyi). In both cases, the minimum entropy of the output
is reached precisely whenZ(n) andX(n) coincide, up to
inherent scale and delay indeterminacies.1

The deconvolution procedure then simply consists in ad-
justing the “equalizing” filter H with inputY (n), such that
its outputZ(n) has minimum (estimated) entropy.

In order to minimize the entropy, knowledge of its gradient
with respect to the matrix coefficientshk is helpful. Using
a kernel estimate of the probability density, we can obtain
an analytical expression of this gradient in the case of the
quadratic entropy (r = 2).

3.2 Gaussian kernel estimation of the quadratic entropy

Based on the observation ofN samples{Y (1) , . . . , Y (N)}
of Y (n), we estimate the densityfY of Y as

f̂Y (Y ) =
1
N

N∑
k=1

φY (k),σ2I (Y ) (8)

whereφµ,C denotes a Gaussian kernel with meanµ and co-
variance matrixC.

Introducing the matrix

H = [h0‖h1‖ . . . ‖hL−1]

and a(qL × 1) vectorȲ (n) that collectsL time samples of
Y (n) as

Ȳ (n) = [Y (n) , Y (n− 1) , . . . , Y (n− L + 1)]T ,

Z (n) can be expressed under a matrix form asZ (n) =
HȲ (n) . Thus a natural gaussian kernel estimate of the law
of Z (n) follows as:

f̂Z (Z) =
1
N

N∑
l=1

φZ(l),σ2HHT (Z) .

The estimate of the quadratic entropy can then be ex-

1Indeterminacies. IfA is a unitary matrix, in the case where the com-
ponents are independent thenHr(AX(n − k)) = Hr(X(n)), where
X(n − k) = [x1(n − k1) . . . xm(n − km)]T ; otherwise the delay must
be the same on each component.
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plicitely computed as

H2 (Z) = − log
∫

p2
Z (z) dz

= − log




1
N2

N∑
k,l=1

φ0,2σ2P (Z (k) − Z (l))


 (9)

with P = HHT and the help of the convolution equality
∫

φZi,σ2P (z)φZj ,σ2P (z) dz = φ0,2σ2P (Z (k) − Z (l)) .

3.3 Gradient of the (estimated) quadratic entropy
Computation of the matrix gradient

∂H2(Z)
∂H

of the quadratic entropy (9) is a formidable adventure. Let us
recall that the matrix derivative∂A/∂B is a partioned matrix
whose(i, j) block is

∂A

∂Bij
=

[
∂Akl

∂Bij

]

(see [10] for a review of useful matrix gradient identities).
Let us begin by some notations: we noteR = 2σ2P =

2σ2HHT , Zk,l = Z (k) − Z (l), Yk,l = Y (k) − Y (l) and

Π = HT
(
HHT

)−1
H. We also introduce the matricesU

andŪ as
∂H

∂H
= Ū ,

∂HT

∂H
= U.

Now write the entropy in (9) asH2 (Z) = H(1) + H(2)

with

H(1) = log
{
N2 (2π)p/2 detR

}
andH (2) = log

N∑
k,l=1

Ek,l,

whereEk,l = e−
1
2 (Zk,l)

T R−1(Zk,l). In order to compute the
gradient we have derived the following lemmas. Lemma 2
enables to compute the gradient ofH (1):

Lemma 2 For P = HHT , we have

d

dH
log |detP | = 2P−1H

The delicate step in the computation of the gradient of the
second termH (2) is the evaluation of the derivative of the
quadratic formzTR−1z, with z = Hy. We use the two
following lemmas:

Lemma 3 The derivative of a product of matrices writes

∂ABC

∂D
=

∂AB

∂D
(In ⊗ C) + (Im ⊗AB)

∂C

∂D

=
∂A

∂D
(In ⊗BC) + (Im ⊗A)

∂B

∂D
(In ⊗ C) + (Im ⊗ AB)

∂C

∂D

if D is m× n, (see [10]).

Lemma 4

∂z

∂H
= Ūp,qL (IqL,qL ⊗ y) = vec{Ip} ⊗ yT

∂zT

∂H
=

(
Ip,p ⊗ yT

)
Up,qL = yT ⊗ Ip

Furthermore, the derivative of the inverse of a matrix is given
in [10] and leads to

∂P−1

∂H
= − (

Ip ⊗ P−1
) ∂P

∂H

(
IqL ⊗ P−1

)
,

∂P

∂H
= Ūp,qL

(
IqL ⊗HT

)
+ (Ip ⊗H)Up,qL.

We finally obtain Lemma 5 using Lemmas 3 and 4 and sim-
plifications from Kronecker products algebra.

Lemma 5

∂zTP−1z

∂H
=

∂zT

∂H

(
IqL ⊗R−1z

)
+

(
Ip ⊗ zT

) ∂P−1

∂H
(IqL ⊗ z)

+
(
Ip ⊗ zTP−1

) ∂z

∂H

so that

∂zTP−1z

∂H
= 2

(
P−1HyyT (IqL − Π)

)
.

The gradient ofH (2) then writes:

d

dH
H(2) = R−1H

∑
k,l

Ek,l∑
pq Epq

Yk,lY
T
k,l (IqL − Π) .

Using Lemma 2 we finally obtain

∂H2(Z)
∂H

= 2P−1H ×
IqL +

1
4σ2

∑
k,l

Ek,l∑
pq Epq

Yk,lY
T
k,l (IqL − Π)


 . (10)

3.4 Simulation results
Based on the Renyi convolution inequality (7) and on the dis-
cussion in section 3.1, we use the estimate of the quadratic
entropy and its gradient in a blind deconvolution procedure.
It amounts to minimizeH2(Z) with respect to the coeffi-
cients of the equalizerh while constraining one of the co-
efficients, sayfk, such that|fk| = 1. This constraint ensures
that the minimization ofH2(Z) does not lead to a trivial null
output and that equality in (7) is reached for a pure delay fil-
ter f . Because thefk depend both on the equalizer and on
the unknown filterg, the constraintfk = 1 can not be en-
sured in practice. However, one can ensure|fk| =constant
for somek, so that the right hand side of (7) remains con-
stant and it makes sense to minimizeH2(Z). A solution is to
fix h0 so thatf0 = h0g0 is also fixed. Then, the RHS of (7)
is fixed, and blind deconvolution is achieved up to a scaling
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matrixf0 (instantaneous mixture). Thus, the resulting output
will have to be post-processed by some standard method of
instantaneous source separation.

Note that constrainingh0 may not lead to a robust con-
straint, especially iff0 = h0g0 is small or (and) badly-
conditioned, since the deconvolution procedure may result
in a filter with very small coefficients (thus with high sensi-
tivity) and since the quality of the post-processing is highly
related to the conditioning off0. However, a bad choice of
h0 will be easy to detect: in such a case,H2(Z) goes to−∞.
In practice, the constraint is ensured by using the gradient
with respect to all coefficients buth0 so thath0 remains to
its initial value.

The blind deconvolution procedure was tested in the case
of SIMO and MIMO systems. Although the procedure may
suffer of spurious local minima, correct blind deconvolution
is achieved in most cases. In the experiments below, we used
N = 100 samples of observationsY (n), and choseσ2 = 0.1
for the gaussian kernels bandwidth.
Experiment 1 — We consider a SIMO case, withq = 2,
where signalsY1(n) andY2(n) are AR filtered outputs (re-
spectively minimum and maximum phase) of a binary signal.
We used

Y1(n) = −0.5Y1(n− 1) − 0.2Y1(n− 2) + X(n),
Y2(n) = −2Y2(n− 1) − 1.5Y2(n− 2) + X(n).

Note thatY1(n) can be deconvolved using predictive decon-
volution, butY2(n) can not. Using the Renyi blind deconvo-
lution procedure withL = 15, the SIMO system is correctly
inversed: the impulse response of the equivalent filterf , is
reported figure 2.

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Equivalent filter

Time

Figure 2: Equivalent impulse responsef for experiment 1.

Experiment 2 — An important property of SIMO systems is
that FIR SIMO filters can be (perfectly) equalized by a FIR
filter, under some technical conditions. So we now consider
the equalization of a FIR SIMO filter, withq = 2. The trans-
fer function is

g(z) =
[

1
0.82

]
+

[
0.7
1

]
z−1 +

[
0.5
0.4

]
z−2 +

[
0.5
−0.3

]
z−3

Using an equalizer of lengthL = 4, the system is also cor-
rectly inversed, as indicated figure 3.
Experiment 3 — Last, we report the results obtained for a
MIMO system, withp = 2 inputs andq = 3 outputs. The
transfert function considered is

0 2 4 6 8 10 12 14 16 18
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

Equivalent filter

Figure 3: Equivalent impulse responsef for experiment 2.

g(z) =


 1 −0.7
0.82 1
0.7 0.3


+


0.5 0.5
0.4 −0.3
0.1 −0.2


z−1+


0.3 −0.5
0.6 −0.5
1 0.8


z−2.

With L = 12, the blind deconvolution procedure converges
again to a good equalizer, providing the complete system im-
pulse responsef given in figure 4.
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Figure 4: Equivalent impulse responses f for experiment 3.
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