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ABSTRACT

A new approach to blind source separation (BSS) in
the wavelet domain is introduced. The technique im-
proves the speed of convergence of the natural gradient
algorithm (NGA), and overcomes the problem of having
to select the non-linearities required to separate mixed
sub- and super-Gaussian signals. The distribution of
the wavelet coefficients of certain natural source signals
is modeled by a Laplacian density, and therefore in the
time-scale domain the problem of selecting an appro-
priate activation function is overcome. Experimental
results show the validity of this method.

1 Introduction

The recovery of a number of source signals from obser-
vations which contain only mixtures of these signals is
the essence of blind source separation. One of the as-
sumptions at the heart of BSS is that at most one source
has a Gaussian distribution. In practice, however, the
performance of BSS algorithms improves as the proba-
bility density functions (pdfs) of the sources become less
Gaussian, a phenomenon that has been observed when
mapping certain signals from the time domain to the
frequency domain. In this paper we address the BSS
problem in the wavelet domain, and make use of an im-
age processing result to obtain a model for the sample
distribution of the wavelet coefficients of the sources.
The proposed method allows the separation of mixtures
of both sub- and super-Gaussian signals without having
to use different non-linearities, as is shown by computer
simulation.

2 Problem statement

When n real sources are mixed by a time-invariant in-
stantaneous channel, and no noise is present, the m ob-
served signals are given by [1]

x(k) = As(k) (1)

where x(k) € R™ is the vector of observed signals, and
s(k) € R™ is the vector of source signals, assumed to
be zero-mean and mutually independent. A € R™*"

MECG

FECG
&
o o
T T
I é I

Figure 1: Maternal and foetal electrocardiogram (ECGQ)
components extracted with the JADE algorithm, and
de-noised with WT.

is an unknown, full column rank, mixing matrix, and
typically it is assumed that there are at least as many
sensors as sources, that is m > n, and that at most
one source has Gaussian distribution. The sources are
recovered using the following linear separating system

y(k) = W(k)x(k) = W (k)As(k) (2)

where y(k) € R"™ estimates s(k), W(k)e R™™
is the separating matrix, and the product
P(k) = W(k)AcR"™" is known as the global
mixing-separating matrix. The performance of a BSS
method can be assessed by plotting the performance
index (PI), which is a measure of the closeness between
W (k) and the pseudo-inverse of the mixing matrix,
taking into account the scaling and ordering ambiguities.

3 The Wavelet transform

The wavelet transform (WT) maps a signal from
the time domain to the time-scale domain. Discrete
wavelets are defined as

P, 4 (k) =272y (277K — q) (3)

where j, ¢ € Z. The resulting functions form a set of dis-
crete wavelet basis functions [2], and the wavelet trans-
form of a signal = (k) is given by the inner product of
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Figure 2: Sample pdfs for the sources shown in Fig. 1
(upper plots), sample pdfs of corresponding wavelet co-
efficients (middle plots, solid lines), fitted distributions
(middle plots, dotted lines) and residual error (lower
plots).

the signal with each wavelet:

Cjg = (@ (k) ;4 (K)) (4)

where ¢, denotes the transform coefficients, and (-,-)
represent the inner product. The expression in equa-
tion (4), together with the linearity property of the in-
ner product, leads to the following result, useful when
assessing the performance of BSS methods operating in
the wavelet domain. When the mixing matrix A is time-
invariant, the wavelet transform of the i-th observed sig-
nal z; (k) =Y _, aqs; (k) is given by

Wizs ()} = (s: () 0,0 (B) (5)
=1

Thus, the wavelet transform of (1) in matrix form is
c.= Ac; (6)

where ¢, = [(z1 (k) ¢, (k). (20 (k) , 0, (K))]
and ¢ = [(s1(k),v;, (K)) ..., (sm (k) ,1;, (k)] are,
respectively, the vectors of wavelet transformed sensors
and sources. It follows that the sources estimated in the
wavelet domain yyy (k) are given by

yw (k) =W (k) c; =W (k) Ac; (7)

Hence, PI remains a meaningful performance measure
for BSS algorithms operating in the wavelet domain.
The wavelet coefficients of natural images have been re-
ported to have highly non-Gaussian statistics, which can
be modeled using a Laplacian pdf of the form [3]

Fop (€)= eI IN (s,p) (8)

where N (s,p) = 2sT' (1/p) /p, and T (1) = [;° t'"te~dt,
is the Gamma function. Expressions for the variance
o2, and kurtosis k of the distribution are given in [3].
Frequency and time-frequency approaches to BSS have
been motivated by the observation that certain signals
are less Gaussian in the frequency domain than they are
in the time domain. To demonstrate the validity of the
model (8), applied to the distribution of the wavelet co-
efficients of one-dimensional (1-D) natural signals, we
use the least squares curve fitting method, to fit the
Laplacian pdf in (8) to the sample pdf of the wavelet
domain representation of the signal. The sample pdfs of
the sources in Fig. 1, and fitted sample pdfs of their
wavelet coefficients are illustrated in Fig. 2 (middle
plots). The lower plots show the residual error, given
by e = fsp(cs;) — q(cs;), where fs, (cs,) is the fitted
pdf for the wavelet coefficients of the i-th source, and
q(cs;) is their true sample pdf. Clearly, the Laplacian
distribution models the statistics of the wavelet coeffi-
cients very closely. The kurtoses of the sources in both
domains are also compared in Fig. 2, indicating that the
signals are less Gaussian in the wavelet domain than in
the time domain.

4 Natural gradient algorithm
The NGA algorithm update equation is given by

W(k+1) = W(k) +n(k)[L - £y (k)y" (k)]W (k) (9)

where f( y(k)) is an odd non-linear function of the out-
put, called the activation function, whose choice de-
pends on the statistics of the sources, and n(k) is a
positive adaptive learning parameter defined in [1].

5 Time-scale approach

The time-scale approach is as follows:

1. the mixtures are divided into blocks of N sam-
ples, their wavelet transform is evaluated, and hard-
thresholding is applied.

2. NGA separates sequentially the transformed signals
in the wavelet domain, leading to yw, (k)

3. the inverse wavelet transform gives N samples of
the estimated sources y (k). Steps 1-3 are then re-
peated for the next block of data.

Reducing the noise level is expected to improve the
performance of NGA because invariably true measure-
ments are noisy, while the algorithm is derived on the
assumption that the sources are mixed in the absence
of noise. Although not satisfying this hypothesis fully,
the mixtures obtained after de-noising are better suited
for processing by NGA than prior to noise removal.
NGA requires a priori knowledge about the statistics
of the sources, and different non-linearities are selected
for the separation of sub- and super-Gaussian sources.
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Figure 3: BSS in the wavelet domain.

Also, the algorithm may fail when mixtures of both
sub- and super-Gaussian signals are observed. To ad-
dress these difficulties, time-varying non-linearities can
be employed, appropriately selected for each channel ac-
cording to the statistics of the output [1]. The most
remarkable property of the time-scale approach is that
the problem of switching between activation functions is
overcome, because the wavelet coefficients of the sources
can be modeled by a Laplacian pdf, and therefore the
activation function need not change when the sources
are sub-Gaussian.

5.1 Convergence of algorithm
The increase in source kurtosis in the wavelet domain
can be expressed mathematically as

YV >k and kY > ko (10)
where x; and &)V are, respectively, the kurtosis of the i-
th signal and of its wavelet coefficients. Post-multiplying

(9) by the mixing matrix A, we obtain an expression for
the global mixing-separating system

P(k+1)=PF)+nk) I-F,(F)|PF)  (11)

where F, (k) = f (y (k)) yT (k). Characterisation of the
transient behaviour of this system is typically a very
challenging task [4], due to the cross-coupling of the
elements of P (k). Convergence speed depends on the
second term on the right-hand side of (11). To a first
approximation, an increase in (I — F,, (k)) results effec-
tively in the algorithm taking a larger step in the de-
scent direction, which is desirable during initial conver-
gence when the filter parameters are away from their
optimal values. Conversely, convergence of the mean of
the algorithm is ensured when limy_,o, E{F, (k)} =L
Thus, some growth in the diagonal elements of —F, (k)
will generally increase the convergence speed of the al-
gorithm, as will a more rapid decay of the off-diagonal
elements. As in [5], we approximate the activation func-
tion for super-Gaussian sources tanh (y; (k)) with the
Maclaurin’s series. However, since we seek to express
(11) in terms of the kurtoses of the sources, the series
is truncated at degree 3. Thus, ignoring the time index
for convenience, the non-linearity is tanh (y;) ~ y; — 5.

Then from (2), and k; = E {s}} —3E {s?}Q, considering
only the diagonal elements of F, (k), and applying the
statistical expectation operator, we have

E{fiy} ~ E{(p%Q +p%1) (1 -ty —pfz)}

B:
1
fg E{pzlll}lil +E{p4112}112
N—— ——
o ¥
E{fay2} ~ E{(p3s +p31) (1 —p3, — 1) }
B.
1
~3 E {pgl}"ﬁ +E {p32}“2 (12)
Hg—/ h{—/

where the expectation is with respect to the elements
of W (k) and the sources and, as in [4], it has been
assumed that the elements of W (k) are independent of
the sources. At time k = 0 we have

E{fi )31 (0)} =By (0) ~ 5 (@(0) 51 +7(0) )

E{f2(0)2 (0)} B2 (0) — 5 (5(0) 1 + ¢ (0) r2)
(13)

Separation in the time-scale domain leads to

P (k+1) = PW (k) + p (k) [I —FY (k)} PY (k)
(14)
Generally, P (k) # P (k), because typically (11) and
(14) will have different dynamical characteristics. At

time k = 0, however, assuming that W (0) is the same
in both domains, (13) becomes

E{fwr (0)ywr (0} = By (0) — 3 (2 (0) 1Y + 7 (0) 1Y)

B { w2 (0) yw2 (0)} = By (0) ~ 5 (8(0) st¥ +¢ (0) )
(15)

From (10), considering E{—F, (0)} and E {-F}V (0)},
it can be shown that

—B, (0) + % (a(0) kY +7(0) kYY) >
B0+ 3 @O mtr0)r) (16)

and similarly
1
—B2(0) + 3 (6(0)kYY +¢(0) kYY) >

Bo0) GO mCOm) ()
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Figure 4: Average behaviour of the elements of
0 (k) (T=F, (k) and (k) (T-F)" (k)):
(upper four plots), diagonal elements (lower four plots,

solid lines) fitted exponential envelopes (dotted lines),
and comparison of convergence of the two algorithms.

off-diagonal

Thus,
diag (I ~FY (0)) > diag(I—F, (0))  (18)

In general, assuming that at time k the matrix P (k) has
the same value in both domains, (18) becomes

diag (I . (k)) > diag(I—TF, (k)  (19)

In the above analysis, the off-diagonal terms of
(I-F,(k)) and (I - FZV (k)) have been ignored be-
cause during initial convergence the diagonal elements
are large and dominate algorithm performance. This

is illustrated in Fig. 4, which shows the evolution
of the elements of the matrices n (k) (I —F, (k)) and

w (k) (I - FZV (k’)), averaged over 30 independent tri-

als, where the contributions of the step-size parameters
have been taken into account since, due to their self-
adaptive nature, they play a role in the behaviour of
the algorithm. Exponential envelopes are fitted to the
waveforms to compare the rate of convergence of the
two algorithms, and indicate that NGA has faster con-
vergence speed when operating in the wavelet domain.

6 Simulations

The sources in Fig. 1 are mixed by a stationary channel,
zero mean Gaussian noise at 10dB SNR is added, and
the non-linearity is f;(y;(k)) = tanh(y;(k)). The signals
are separated, in 30 independent trials, with conven-
tional NGA, and NGA in the wavelet domain. Since PI
in the time-scale domain is a valid performance mea-
sure, the performance indices obtained with the two
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Figure 5: PIs obtained with NGA and NGA in the
wavelet domain when the sensors are mixtures of a) two
super-Gaussian sources, and b) one super-Gaussian and
two sub-Gaussian sources.

methods are compared in Fig. 5a. It shows that the
wavelet domain approach results in faster convergence
speed than time domain NGA. Following convergence,
a lower PI is also obtained. Improved algorithm perfor-
mance is largely due to the sample pdf of the sources
being closer to a Gaussian distribution than the pdf of
their wavelet coefficients. Fig. 5b shows the average per-
formance of the two methods when the foetal ECG and
two sub-Gaussian sources are mixed by a time-invariant
instantaneous channel, and the activation function is
fi(yi(k)) = tanh(6 * y;(k)). The results clearly show
that when operating in the time domain NGA diverges,
thus failing to separate the sources. Conversely, when
separation is carried out in the time-scale domain the
algorithm converges quite quickly and the performance
index remains low thereafter.

7 Conclusions

NGA operating in the wavelet domain results in higher
convergence speed than when it separates in the time
domain. Furthermore, this approach separates mixtures
of sub- and super-Gaussian signals without the need to
switch between different non-linearities.
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