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ABSTRACT

Subband decomposition has already been shown to in-
crease the performances of spectral estimation but in-
duced frequency overlapping may be troublesome, bring-
ing edge effects, when spectral estimation is applied
after subband decomposition and decimation. This
paper proposes a new spectral estimation procedure
based on subband decomposition and frequency warp-
ing which reduces the overlapping frequency problem.
Simulation results confirm the interest of this new al-
gorithm.

1. INTRODUCTION

Subband decomposition has been used successfully in
many signal and image processing applications such as
speech, image and video compression [1], [2]. Some
authors have recently shown that subband decomposi-
tion can also be a powerful tool for spectral estimation
[3], [4]. In particular, the performance of traditional
spectral estimation methods can increase when applied
to signals filtered by an appropriate filterbank rather
than applied to the corresponding fullband signal. This
property has been theoretically explained as follows:

e for an AR(q) process, the minimum pth-order
prediction error of the fullband exceeds the aggre-
gate of the minimum pth-order prediction errors
of the subbands, for p < ¢ [3],

e the local SNRs and frequency spacing increase by
the decimation ratio [4].

These interesting results have been demonstrated for
a bank of ideal infinitely sharp bandpass filters. Some
experimental results have shown that these results can
also apply to non-ideal filterbanks such as modified
Quadrature-Mirror Filters (QMF’s) [3] or cosine mod-
ulated filterbank [4]. However, when using such non-
ideal bandpass filters, the same harmonic component
can appear in two contiguous subbands at two different

frequencies. This problem referred to as spectral over-
lapping occurs when the harmonic frequency is close to
the subband edges. Of course, this spectral overlapping
can be very troublesome in applications where the num-
ber of harmonic signals is unknown. The main contri-
bution of this paper is to study a new spectral estima-
tion procedure based on subband decomposition and
frequency-warping which mitigates the spectral over-
lapping problem.

Section 2 presents the problem formulation and section
3 is devoted to the proposed method: the coupling of
frequency warping and subband decomposition before
spectral estimation. Simulation results are presented
in section 4 and conclusions are reported in section 5.

2. PROBLEM FORMULATION

The observed signal is the sum of p sinusoids corrupted
by additive white Gaussian noise:

P
T = ZAi cos (27 fit + ¢5) + n, (1)
i=1
where t = 1,..., N. The problem of estimating the fre-
quencies f; from the observed samples z;,t = 1,..., N
has received considerable attention in the signal pro-
cessing literature (see for instance [5] and references
therein). As a consequence, many algorithms have
been studied to solve this spectral estimation problem.
These algorithms include nonlinear least squares (LS),
High-Order Yule-Walker, Pisarenko and MUSIC meth-
ods [5]. Algorithms based on the Singular Value De-
composition (SVD) of the autocorrelation matrix have
became very popular because of their high resolution
properties and their insensitivity to model order over-
estimation. In this paper, we use the high-order Yule-
Walker (HOYW) frequency estimation method ([5], p.
151) which is summarized below:

e estimate the N x IV autocorrelation matrix of z;
denoted R,,

e compute the SVD of R,,



e solve the rank-truncated HOYW system of equa-
tions in the LS sense, which yields the estimated
AR parameter vector denoted a,

e determine the peaks of the pseudospectrum

S(ejw) = |A(e%w)‘2 s

where A(z) is the estimated AR polynomial (Z
transform of the AR parameter estimates).

To illustrate the spectral overlapping problem, consider
a pure sinusoidal signal embedded in additive white
Gaussian noise:

xy = Aj cos(2m fit + ¢1) + ny, (2)

where A; = 1, ¢; is uniformly distributed on [0, 27| and
the additive noise variance is 02 = E[n?(t)] = 0.5 (the
signal to noise ratio is SNR = 10log (%) = 0dB).
The signal z; is filtered by an 8-channel cosine modu-
lated filter bank as in [4]. Figure 1 shows the averaged
pseudospectra associated to the 5th and 6th subbands
(corresponding to [0.25,0.3125] and [0.3125, 0.375[), com-
puted from 50 Monte Carlo runs (the frequency is f1 =
0.31). As can be seen, two different peaks appear in
the two contiguous subbands, because the frequency of
the sinusoidal signal f; = 0.31 is close to the subband
edge.
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Figure 1: Average pseudospectra associated to the 5th
and 6th subbands of a filtered pure sinusoidal signal.

3. DISCRETE FREQUENCY WARPING

This section studies a subband discrete frequency warp-
ing (SDFW), which allows to mitigate the spectral over-
lapping problem due to subband decomposition. The

proposed SDFW consists in filtering the original sig-
nal (before subband decomposition) by a cascade of L
causal first-order allpass filters with Z-transform

271 —b
= )

The corresponding structure and its equivalent schematic
symbol are depicted in Figures (3.a) and (3.b). Straight-
forward computations show that W (z) evaluated on the
unit circle can be written W (e¥) = e 7% where

bsinw > ’ ()

1—bcosw

W (z)

0p(w) = w + 2 arctan (

which reveals the allpass structure of the filter W (z).
Note that the proposed SDFW is very similar to the
frequency warped Laguerre filterbanks studied in [6]
and shown in Figure 4. However, our approach does
not require the time reversal operation. Moreover, the
convolution with the zero-order Laguerre filter Ag(z)
has been removed from Evangelista’s structure, which
allows frequency warping without any amplitude dis-
torsion. Note that the perfect reconstruction proper-
ties are not satisfied in absence of Ag(z). However, such
properties are not required for spectral estimation.

By denoting U, (z; b) the Z-transform of the mth all-
pass filter ouput, the following result can be easily ob-
tained:

Un(e?¥;b) = Y(eI)Wm(elv)
— Y(ejw)e—ijb(w), (5)

where Y'(z) denotes the Z-transform of the input se-
quence y, t € Z. As a consequence, for a pure har-
monic signal z; = Aj cos(2rfit + ¢1), the output of
the mth allpass filter expresses as:

m(t;b) = A1 cos(2nfit + 1 — mBy(w1))  (6)

where wy; = 27 f;. This expression for u,, (t; b) is clearly

periodic with respect to m, with period 0b%gl). Con-

sequently, u,,(t;b) admits the following discrete-time
Fourier (DTFS) series representation

+oo
Um(t;0) = D e, (7)

m=—0o0

where the DFTS coefficients are clearly defined as fol-
lows

Ay i (27 frt+ér) m=1
Cm = %e*j@ﬁfltﬂ)l) m=—1
0 else

In other words, the frequency-domain representation of
Um (t; ), m € Z, consists of two complex sinusoids with



frequencies * % This analysis shows that the filter-

bank structure depicted in Figure 3(a) can be used as
a DFW, which warps each frequency f; to % The
corresponding frequency warping depends on parame-
ter b, as depicted in Figure 5. Figure 2 shows the 5th
and 6th subband spectra for three different frequency
warpings (i.e. three different values of parameter b).
As can be seen, the spectral overlapping problem dis-
appears for an appropriate value of b. More precisely,
one peak appears in the 6th subband for b = 0 and
disappears for b = —0.094 and b = —0.183.

Subband decomposition introduces aliasing side ef-
fects in the neighborhood of the cut-off frequencies of
each filter. Then, the parameter b of the warping filters
W (z) has to be well-chosen: for example, if b = —0.183
causes a peak to disappear in the 6th subband, there is
still a spurious peak in the 4th subband. Thus, it is of
great importance to adjust frequency warping in order
that each frequency bin is warped just in the middle of
its corresponding frequency interval. Let us divide the
frequency interval [0,0.5[ into M equal subbands and
note f; = (j — 1)% , 7 =1,..M the cut-off frequen-
cies. The algorithm used to reduce this aliasing effect
can be summarized as follows:
forj=1to M

for f = fj to fj+1
1 - warping parameter b selection: warp fre-
quency f to f; = f”;—_ff using:
1

b f) = sin(2w (8)
cos(2m ) + gzt

2 - warping operation: apply the set of fil-
ters W (z) to the original process z; to get a
warped signal u so that:

Sa, (e77) = 8y (e7*™him) (9)

3 - Subband decomposition: use the jth filter
of the chosen filterbank (here cosine modu-
lated filters, see [4]) on the warped signal u
to get a filtered and decimated version y;.
4 - Spectral estimation : perform the HOYW
method described in section 2 on this sub-
band signal to estimate uniquely

Su(e?Tim) = M2S,, (97 Mhsm),  (10)

end for.

end for.

It should be noted that Eq. (10) is verified theoreti-
cally for ideal infinitely sharp bandpass filters. But, as

the frequency under interest, f; _, lies in the middle of
the jt* subband, the amplitude of all other filters can
be assumed to be negligible. This ensures the validity
of this equation.
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Figure 2: Average pseudospectra associated to the 5th
and 6th subbands using frequency warping.

4. SIMULATION RESULTS AND
PERFORMANCES OF THE METHOD

In order to highlight the performances of the proposed
method SDFW, the power of the linear prediction error
(LPE) is computed as a function of the analysed fre-
quency. Let us consider the signal defined in Eq. (2).
Different simulations will be carried on with a normal-
ized frequency f; varying between 0 and 0.5. Using the
exact autocorrelation of the signal:

re(7) = ATl cos(2m f17) + 026(7), (11)

straightforward computations lead to the expression of

the LPE power o2 as a function of the frequency fi:

A_12 —2acos? (27 f1) + acos? (27 f1) + B
2 v — cos?(2m f1)

ol (fr) =

where a = 2SNR!,3 = 2SNR ' +3SNR ?4SNR *,y =
(1+SNR™1)? and SNR = 41,
When AR estimation is preceded by subband decom-
position, the expression of the LPE is the same as in
Eq. (12) replacing f; by M f; and SNR by MSNR.
Figure 6 presents the evolution of this LPE power ver-
sus the frequency under interest f;. Both experimen-
tal and theoretical results show that, in this particular
case of an AR(2), subband decomposition clearly re-
duces the LPE power but side effects (in the subband



edges) are proportionally bigger. The main interest of
the proposed SDFW method is to bring back estima-
tion of each frequency component in the middle of its
corresponding subband. In this case, the LPE power is
constant and equal to:

» _ A1? SNRy,; (2 + 3SNR,;, + SNR; )

o2 2 ) (13)

2 (1+SNR_,)?

. M A2 .
with SNRsyy = MSNR = S5+, Figure 7 show the-

oretical and experimental LPE power using a biased
estimator of the autocorrelation.

5. CONCLUSION

In this paper, we presented a new method, SDFW,
and we studied its performances for reducing aliasing
effects in the neighborhood of the filter’s frontier fre-
quencies and obtained some gain on linear prediction
error criterion. Nowadays, this algorithm is only ap-
plicable to slowly time-varying signal but future works
may lead towards an adaptive algorithm, applicable to
non-stationary signals.

6. REFERENCES

[1] J. W. Woods, Subband image coding. Boston (MA): kluwer,
1994.

[2] A. Gersho and R. M. Gray, Vector quantization and signal
compression. Boston (MA): kluwer, 1992.

[3] S. Rao and W. A. Pearlman, “Analysis of linear predic-
tion, coding, and spectral estimation from subbands,” IEEE
Trans. Inf. Theory, vol. 42, pp. 1160-1178, July 1996.

[4] A. Tkacenko and P. P. Vaidyanathan, “Sinusoidal frequency
estimation using filter banks,” in Proc. IEEE ICASSP-2001,
(Salt Lake City, Utah), pp. 825-828, May 2001.

[5] P. Stoica and R. Moses, Introduction to spectral analysis.
Englewood Cliffs NJ: Prentice-Hall, 1997.

[6] G. Evangelista and S. Cavaliere, “Frequency-warped filter
banks and wavelet transforms: a discrete-time approach via
Laguerre expansion,” IEEE Trans. Signal Processing, vol. 46,
pp. 2638-2650, Oct. 1998.

— W( W) 4 W@ +—

w,(t.b) w,(t.b)
@

u,(tb) |

— W@ | —

®)

Figure 3: Filter cascade for frequency warping (a) and
its symbolic representation (b).
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Figure 4: Frequency warped Laguerre filterbank.

Figure 5: Warped frequency versus the original one for
different values of parameter b.
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Figure 6: LPE power versus the analyzed frequency.
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Figure 7: LPE power versus the analyzed frequency
using frequency warping.



