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ABSTRACT 
 
Recent improvements in CCD technology make hexagonal 
sampling attractive for such applications as remote sensing 
where the acquisition process is crucial to preserve image 
quality without introducing data transmission overheads. 
In the following hexagonal sampling is analyzed under 
general assumptions and compared with conventional 
rectangular sampling. The analysis takes into account both 
the lattice form (square, rectangular, hexagonal, regular 
hexagonal), and the shape of the single detector element. 
The hexagonal grid is not based a-priori on a regular 
hexagon tessellation, i.e., no constraint is made on the 
ratio between the sampling frequencies in the two spatial 
directions.  
 

1. INTRODUCTION 
 
The objective of this paper is to quantify the advantages of 
hexagonal sampling grid and hexagonal pixel shape with 
respect to conventional rectangular sampling and 
rectangular pixel shape. Sampling conditions are 
expressed for a generic hexagonal sampling grid, and a 
comparison is performed with sampling conditions for a 
corresponding rectangular lattice. Afterwards the 
comparison is performed under the assumption of same 
number of pixels for unity of surface, and the particular 
case of regular hexagonal sampling grid is considered. 
Regarding the single detector cell, the hexagonal and the 
rectangular shapes are examined. Finally, octagonal shape 
detectors are compared to rectangular and hexagonal ones. 
 

2. HEXAGONAL LATTICE 
 
Let us denote a generic hexagonal sampling lattice as that 
depicted in Figure 1 (left) as: 
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Notice that the hexagonal sampling steps ∆X’ and ∆Y’ are 
defined as the distances between two consecutive columns 

and rows, respectively. This definition is natural and 
useful for computational purpose, even if it is not handy to 
perform a comparison with a rectangular grid with 
sampling steps ∆X, ∆Y. In fact, to have the same density 
of pixels on the two grids it should be 
2(∆X’∆Y’)=(∆X∆Y). No constraint is assumed for the 
ratio between ∆X’ and ∆Y’. The resulting sampling grid is 
based on a generic possibly irregular hexagonal geometry, 
the sampling points being the centers of the hexagons. 
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Figure 1: Hexagonal sampling grid and its Fourier Transform. 

 
The Fourier Transform (FT) of a hexagonal lattice is still a 
hexagonal lattice [1] as that reported in Figure 1 (right). 
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In the FT domain, unlike rectangular lattices, in  
hexagonal lattices the inverse of the sampling steps 
correspond with the distances between two “aligned” rows 
and columns, that are twice the corresponding steps. The 
FT GS-hex(ξ,η) of the hexagonally sampled image is 
composed by infinite replicas of the spectrum of G(ξ,η), 
FT of the image g(x,y) to be sampled. These replicas are 
centered in the points of the hexagonal lattice (2) that is 
the FT of the hexagonal sampling lattice.  
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If we assume that g(x,y) is characterized by a band-limited 
spectrum with an elliptic support, a comparison between 
the spectrum of the sampled image in the two hypotheses 
of rectangular and hexagonal sampling can be performed 
as shown in Figure 2 in the case of equal pixel density. 
If Nrect and Nhex are the pixel densities, i.e. the number of 
pixel for unity of surface for the detector array in the 
rectangular and hexagonal grids, respectively, it is easy to 
notice that Nrect=1/(∆X∆Y) and Nhex=1/(2∆X’∆Y’). The 
same pixel density is so obtained when ∆X∆Y=2∆X’∆Y’. 
If  this constraint on the density in the spatial domain is 
verified, also the density of the replicas results the same.  

Figure 2: Projection onto the spatial frequencies plane of the FT 
of a hexagonally sampled image (filled) and of a corresponding 
rectangular sampling with same pixel density  (dashed contour). 
 
 

3. HEXAGONAL VS. RECTANGULAR LATTICE 
 
Let us fix the values of ξMAX and ηMAX,  for which G(ξ,η) 
becomes null and find the sampling limits to avoid aliasing 
[2-3]. A comparison between these two Nyquist 
constraints in the rectangular and hexagonal case can be 
then performed by considering the limit values for the 
pixel densities: the less is the minimum density requested, 
the better is the sampling performance. 
The minimum densities correspond to a packaging of the 
spectra as those reported in Figure 3 for the rectangular 
sampling and in Figure 4 for the hexagonal grid. 
Thus, the hexagonal sampling avoids aliasing with a pixel 
density that is √3/2 and thus lower than rectangular one: 
 

MAXMAXrectN ηξ4min =−  

minmin 2
332 −− == rectMAXMAXhex NN ηξ  (3) 
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Figure 3: Spectral packaging for best rectangular sampling. 
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Figure 4: Spectral packaging for best hexagonal sampling.  
 
 

4. SPECTRAL PACKAGING  
 
Figure 4 shows the two hexagonal samplings that originate 
the closest and thus the best packaging of the replicas in 
the frequency domain. Nyquist conditions can be found in 
the general case of a hexagonal lattice originating a non 
optimal tangential packaging. Let us now consider the case 
of a signal whose spectrum possesses a circular support of 
radius R (ξMAX=η MAX=R).  
 

 

1/(2∆X’) 

1/(2∆Y’) 

ξ 

η 

ξ 

η η 

 
Figure 5: Tangential packaging for circular support spectrum. 
 
The Nyquist conditions can be found by considering the 
generic tangential packaging of Figure 5 and result to be 
the following: 
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Figure 6 graphically describes the constraints i) ii) and iii). 
The aliasing zone is filled. Since the geometric locus of 
constant pixel densities corresponds with a equilateral 
hyperbola, it is possible to demonstrate that i) ii) and iii) 
are always less stringent, i.e. related to a lower pixel 
density, than those of the rectangular sampling. Only for 
the point C of Figure 6 (∆X’=∆Y’) the pixel densities 
result the same for the two lattices at the Nyquist limit; in 
fact in this case the hexagonal lattice becomes a square 
lattice rotated by 45°. Under the assumption of circular 
support, the two  optimal packaging of Figure 4 
correspond to regular hexagonal lattices, and are 
represented by points A and B of Figure 6.  
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Figure 6: Nyquist conditions for hexag
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Figure 7: Square vs. hexagonal lattice.
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6. PIXEL SHA
 
Pixel shape also has an impact on
sampled image [5-6]. If the signa

limited, the MTF (Modulation Transfer Function) should 
be ideal, i.e. equal to one inside the base-band. In the  
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practice, detectors with rectangular shape elements with 
nearly uniform sensitivity are employed due to 
technological reasons. Recent developments in sensor 
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requirements: trivially the MTF should be not only ideal  
but also symmetric. The symmetry of the shape is a strong 
requirement, since an asymmetric shape is related to an 
asymmetric pre-filtering behavior. The SNR is another 
parameter that can be considered. Since high values of the 
SNR are desirable, a pixel shape that permits a high fill 
factor is preferable. In the following, the MTF of a 
hexagonal (regular) pixel shape is analyzed and compared 
with the MTF of a corresponding rectangular shape. 
 
7. HEXAGONAL VS. RECTANGULAR SHAPE  
 
To analyze the MTF of both rectangular and hexagonal 
shapes, let us consider the sampling grid of Figure 8 in 
which a regular hexagonal lattice of side L is analyzed, 
with a rectangular and a hexagonal pixels shape. The two 
shapes have the same centers and the same areas. 
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Figure 8: Rectangular vs. hexagonal shape. 

 
The MTF of a rectangular shape detector cell is separable: 
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The MTF of a hexagonal pixel shape is not separable and  
cannot be decomposed in sections along axes. Anyway, a 
comparison can be performed by examining these two 
sections with the corresponding sections of the MTF 
referred to the rectangular shape: 
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By comparing 4 and 5 in the limit condition for aliasing 
appearance in the case of a regular hexagonal lattice  (i.e. 
ξ =η = 1/(2∆X’) = 1/(3L) ), we have [7]:  
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The MTF resulting from a hexagonal pixel shape along the 
x direction is about 4.8% lower than the MTF of a 
rectangular pixel shape while the MTF along the y 
direction is about 13.6% higher. In addition the hexagonal 
pixel shape MTF is approximately equivalent in both x 
and y directions. Since the MTF has to be as  equal to one 
as  possible, the hexagonal pixel shape results better along 
the y direction and worse along the x direction; a 2-D 
analysis can show that the hexagonal pixel shape MTF 
exceeds the MTF of the rectangular pixel shape over most 
of the base-band. In any case it is fair to notice that the 
MTF of a detector element is a good and common way to 
analyze the effects of the pixel shape, but not completely 
satisfying to measure the effect of over-sampling and to 
describe the pixel shape impact onto the quality of the 
oversampled signals, as it only allows for pixel shape and 
size, and not for the relative position between pixels. 
Concerning symmetry, it is trivial to notice that a regular 
hexagonal pixel shape is more symmetric (of a 50%) than 
a square pixel, since it exhibits 12-fold as opposed to 8-
fold symmetry. Further, the hexagonal sampling has three 
axes of symmetry (0°, 60° and 120°) in the frequencies 
domain, as opposed to the two in the rectangular grid; this 
symmetry results useful for computational tasks (25-50% 
more efficient), such as filter design.  

 
8. OCTAGONAL VS. RECTANGULAR SHAPE  

 
Octagonal shape has been adopted in recent CCD sensors. 
The best mapping is reached by means of a square 
sampling lattice with a fill factor of 82%; the number of 
symmetry axes increase to 16. Analogously to the 
hexagonal shape detector element it is possible to compare 
the octagonal shape with side LOCT , with a rectangular 
shape on a square lattice. 
By considering the MTF’ in the limit condition for aliasing 
appearance for the square and the octagonal shape, both 
referred to the same square lattice with sampling step of 
LOCT(1+21/2), i.e. on the base-band  border, we have [4]: 
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Where MTF’d refers to the diagonal (45°) direction. 

This results in a better performance of the octagonal shape 
detector along axes and diagonal directions. So, octagonal 
shape shows a better performance from the symmetry and 
the MTF point of view with respect to the square shape. 
 

9. CONCLUSIONS 
 
Hexagonal sampling lattice offers better performance than 
the rectangular one. Wider spectra can be sampled without 
aliasing with the same pixel density, or less number of 
pixels are needed to sample the same signal. This allows a 
wider area for each detector element, with an improvement 
in the SNR and in the low-pass pre-filtering capabilities. 
Hexagonal sampling lattices permit to use a hexagonal 
sampling shape with a theoretical fill-factor of 100%, and 
this kind of shape results better from MTF and from 
symmetry considerations. Hexagonal pixel shape better 
approximates a circular band-region then a rectangular. 
The regular hexagon symmetry may result useful for 
computational tasks, such as filtering. Hexagonal pixel 
shape involves three axes of symmetry (0°, 60°, and 120°) 
in the spatial frequencies domain, as opposed to the two of 
the rectangular onei.  Octagonal shape has a fill factor that 
is not 100%, and is related to a square lattice, but it is 
more symmetric and performs better than a square shape . 
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