A HIGH-LEVEL DEVELOPMENT TOOL DEDICATED TO
THE GENERATION OF CORESFOR THE
IMPLEMENTATION OF IMAGE PROCESSING
APPLICATIONS.

Virginie Frese' Sephen Marshall* Olivier Déforges®

(1)

Dept. of Eledronic end Eledricd Engineeing
University of Strathclyde, 204 George Stred
Glasgow, G1 IXW United Kingdom.
Phone: +44/0 141 548 2250
E-mail: VirginieFresse@eeestrath.acuk
s.marshall @eeestrath.acuk

ABSTRACT

This paper demonstrates the integration of a high-level
development todl in a fast and easy-to-use prototyping
process cdled AV SynDEXx. This processis dedicated to
the implementation of red-time image processng
applicdions on paralel and mixed patforms. The
integration of this final environment, which is a high-
level development tod for the generation of IP cores,
completes the prototyping process The designer of
image-processng algorithms can finally develop and
supervise the whole implementation process without
any pre-requirement and within a short development
time.

1- INTRODUCTION

AVSynDEX is an existing rapid prototyping process
aimed at the implementation of digital signal procesing
applicdions on mixed architectures (multi-DSP+FPGA)
[1][2]. It is based onthe use of available and efficient
CAD todls established along the design process so that
most of the implementation tasks become aitomated.
These tods and architedures are judiciously seleded
and integrated during the implementation process to
asdst a signal-processng spedalist without relevant
hardware eperience The image-processng designer
can aso develop and implement the dgorithm within a
short development time and without requiring highly-
spedalist hardware enginea's. Nevertheless this process
alows the image-processng designer to implement the
functions on FPGA on condition that the corresponding
core (hardware processng) drealy exists. The
generation of new cores is not posshle and a hardware
enginee isthen needed.

This paper completes the development of the previous
prototyping process cdled AVSynDex [1], with the
integration of a high-level development tod, DK1
Thiswork is granted by the Regional Council of Britanny

(2
ARTIST/FRE URER laboratory
INSA RENNES
20 Avenue des Buttes des Coésmes, CS14315
3503 Rennes, France
Phone: +33/0 223 238 286
E-mail: odeforge@insa-rennes.fr

Design Suite [5], for the generation of IP cores. The
result leads to the final rapid prototyping processfor the
development and implementation of any image-
processng applicdions on mixed architedures. The
development and implementation of a stack filter is used
to ill ustrate the benefits of such integration.

2- PROTOTYPING PROCESS

The methoddogy (figure 1) integrates two main CAD
tools. Advanced Visual System (AVS) for the
functional development of the appli cation described as a
static data flow graph [3], and SynDEXx as generator of
optimised distributed exeautive [4].

Data flow graph

(=
functions

Sequential executive/
distributed executive

3
C-
o || rron o]

Figurel: Rapid prototyping process for
implementation of image processing applications.

The image-processng designer credes the data flow
graph by means of the graphicd development tod
cdled AVS. The processng operations are C-functions,
which are conneded together by means of input and
output ports (data transfers between two functions). An
automatic trandator and an acalemic too cdled

SynDEX, ensure the trandation towards hardware and

software descriptions, as explained in [1]. The target

platform is a mixed architecture made up of muilti-

DSPC6x and a Virtex FPGA [2]. This architedure can

be modified without changing the prototyping process

and the avail able links.

Hardware and software processng is different for the

same functionality:

» A software processng operation is a C-function, fully
compatible to the initial processng operation. In this
case, the functional behaviour of the implemented
module is necessarily corred.

* A hardware procesing is a re whose initia
description is made with Hardware Description
Languages (these languages being completely
different). The generation of cores is non-automatic
and cannot be adieved by the image-processng
designer. So, a spedaized hardware engineea must
reproduce the overall functional behaviour of the C-
function to generate the rresponding IP core. The
functionality of the core may be incorrea if the HDL
description does not reproduce the same functionality.
This non-correspondence @n only be deteded during
the hardware implementation.

In this prototyping process there is a perfed
correspondence between the C-function and the
software module. Unfortunately, the hardware modue
does not possess any correspondence with initial
module. This lack of correspondence leads to the
posshility of a functionally incorred hardware
implementation. The only way to check its functionality
is the implementation of the core. This constraint is
time-consuming and the partitioning between the
software and hardware part is difficult to achieve.

The solution is the integration of a high-level
development tool cdled DK1 Design tod, which is a
solution for an easy generation of IP core.

3- INTEGRATION OF THE DK1 TOOL

3.1 Presentation of DK1 Design tool

Celoxica's DK1 design suite is a highleve
environment, enabling the image-processng designer to
generate IP cores [5]. The description is made by means
of the Handel-C language. This language is grounded in
ISO-C but contains sveral extensions required for
hardware developments. Some expressons, statements,
types, type operators and oljeds are used in C-only or

Handel-C only. Generally, most of them are suitable for
both languages.

Different extensions are proposed by Handel-C; some of
them are listed below.

* Handel-C can process variables of arbitrary width.
This means that the size must be judiciously spedfied.
Asthe tod is dedicated to a hardware implementation, a
variable is a register whose sizeis the width of the data.
Operations on several variables are only possble for
identica widths (otherwise the mncatenation operator is
required).

e« An array of n variables corresponds to a set of n
registers. It isalso passible to creae memory arrays and
multi-dimensional memory arrays with wom (write only
memory), rom or ram keywords. The use of rom and
ramisrestricted to one dement accessper clock cycle.

e In a way similar to C-language, a program is
exealted sequentially. The alditional par statement
allows paralel exeautions in a spedfic function. The
parallelism can be & instruction-level or bloc-level.

e For the ommunication, channels provide the links
between parallel branches. One paralel branch outputs
data onto the channel and the other branch reads data
from the channel. Channels aso provide
synchronisation between parallel branches. As with the
variables, Handel-C provides flexible data path widths.

Pt I
}

v v S }
\ Va—
el
——p-channels
parallelism

Figure2: Example of structure proposed by DK1
tool. Some parallel functions can be achieved; the
second line indicates a parallelism between 3 functions
(DK1 tool manages all synchronisations). Data is
transferred by means of channels

[Jprocessing

Paradld to this, the Handel-C language includes some
restrictions such as: the function may not be cdled
reaursively; old-type function dedarations and variable
length parameter lists are not posdble. It is also not
posdble to change a variable by casting a to use the
floating point.

An example of a Handel-C program containing par
statements and channelsis given in figure 3.

Set clock=external "P1";

#define SIZE1 5 *Width of data*/

#define WIDTH 256 [*Size of memory*/

#define LOG2_WIDTH 8 /*With of pointers*/

chan SIZE1 queue in; /*Channels*/

void main(void)

{ ramunsigned SIZE1 Sourcel WIDTH*WIDTH];
unsigned (LOG2_WIDTH*2) i j;

par{
{ for(j=0;j<WIDTH;j++)
for(i=0;i<WIDTH;i++)
queue_in?Source]j*WIDTH+i];}

functionl();
function2();
}
}
Figure3: Example of Handel-C program, 5hits-data

are read from chanrel “ queue_in” to load them in the
memory called “ Souce’ . Paralld to this, “function’
and “function2’” are excuted (with the “par”
statement).

3.2. Generation d coreswith DK1 designtoal.

DK1 Design tool has several modes. Some of them are
used for the generation of 1P cores.

The generation of IP coresis shown in figure 4.

The initiadl AVS description is used to generate the
Handel-C program. According to the previous rules, the
designer turns the C-function into a Handel-C form.
These languages being similar and the trandation being
a instruction level, the modifications are easy to

achieve.
3
C-function ‘
Image designer
h 4
Handel-C function
DK1 Design tool
A4
VHDL / EDIF
Synthesis/ place & route
A4 5
bitstream ‘
Figure4: Processof core generationwith DK1 todl.

DK1 Design Suite has a debug mode to check the
functionality of the function (simulation for the program
with a specific image). This mode is only used to check
the resulting behaviour of the Handel-C function.

Then, the image-processing designer can specify two

modes:

e The firss mode (VHDL) generates the
corresponding VHDL description. A synthesis tool
isthen used to generate the EDIF description.

e The second mode (EDIF) generates the EDIF
description directly.

The structure of the Handel-C language always

guaranties to be synthesized (this is not the case for a

HDL description).

Finally, a place and route tool ensures the generation of

the IP core. All these tools are easy to use and the

image-processing designer does not need additional
hardware expertise.

4- GENERATION OF A NON-LINEAR CORE

The development of a non-linear filter illustrates the
benefits of such integration. The stack filter is a non-
linear filter, which has proved to give excellent results
in image restoration, noise reduction and optical
character recognition. This filter is well suited for a
hardware implementation but the complexity of such
implementation leads to few examples of this occurring
in practice.

4.1. Principle of the stackfilter

All stack filters have two properties, a superposition
property know as threshold decomposition, and an
ordering property known as the stacking property [4].
The principle of thefilter isgivenin figure 5.

[l Telelels]
YvYy

Threshod7 O 0 O 0
Thresholdé O |1 O 0
Threshold5 O |1] |1 0
Threshold4 0 |1] |1 0
Threshold3 |1} |1] |21 et] 1
Threshold2 | 1] |1} |2 Per 1
Threshod1 |1 2] |1 1
Thresholdo | 1] [1] |1 1
Figure5: Example of stack filter. The 3bits inpu

sample is threshold in 8 levds (=2°%). Then, a series of
PBFs computes the min value for each leve. The result
isastackof ‘1" and’ 0’ representing the output sample.

. The threshold decomposition is first achieved
for each pixel of the input window. The output of such
decomposition is a set of binary threshold signals, each
binary signal representing a level or threshold. So, for
m-bits samples, there are k=2" binary signals.

The k binary signals for an n-valued sample,
threshold“(n), are defined according the following
equation

«/y_ O0:Input(n) <k
threshold ()= 3 input(n)= k

. Then, a series of Positive Boolean Functions
are performed for every threshold. PBFs can only be
used because they maintain the stacking property and
hence validate the stack filter as explained in [6]. PBFs
can remain unchanged for ead threshold bu any
combination is alowed oy if the output remains a
stadk of ‘1" with astadk of ‘0’ on top.

. The resulting binary signals represent the
output value, found by stacking the Boolean outputs
excluding Threshold 0.

4.2. Generation of the non-linear core.

The dharaderistics of the stack filter implemented are:

* Imagesare 256256

* Pixelsare 8hit data (= 256 kinary signals).

e Theinput window is 3*3 pixels.

e The PBFsare minimum operators

The only benefits are in the accéeration of the
development processand the exeaution times (the result
of processng on the images being identicd to software
implementation).

The first stage is the description of the functional
agorithm by means of a C-function. This first function
is exeauted on a PC to check the functional behaviour of
the filter. The C-function is diredly and ealy
implemented in a C6x DSP. The image-processng
designer modifies the C-function to oltain a Handel-C
form. The functionality is checked with the DK1 todl.

4.3. Results

Table 1 shows the execution times acording the target
component. The result of a DSP implementation is not
satisfadory: the stadk filter contains several nested
loops containing conditioning, which do not suit the
VLIW architedure of the DSP.

PC P lll- | DSPC6x Virtex
1GHz 200 MHz XCV400E
Time 8s 1845s 2,282 ms

Table 1: Resulting execution times for a stack filter.

Timing charaderistics for the FPGA are:

e Minimum period: 38.927ns (Max. freq.: 25.689MH2z)
¢ Maximum net delay: 8.445s

The result of the FPGA implementation is stisfadory:
the cre @n be used to implement red-time image
processng applicaions. The exeaution time (2.282ms,)
alows the image-processng designer to implement the
agorithm within red-time constraints.

Flipsflops | 177 (1%)
LUT 2101
RAM (16*1) 160

SLICES | 797 (16%)

Table 2: Resources for a stack filter.

In addition to a fast exeaution time, the resources are
relatively low as shown in the table 2. External memory
is used to load and save samples (17 ns per memory
accesy. The number of dlices used is 797 (4800 are
avalable in the Virtex FPGA). Each Virtex CLB
contains four Logic cdls organised in two similar glices.
Consequently, 16% of the FPGA is used for the stack
filter.
DK1 Design Suite ensures a fast generation of IP cores:
e Thetrandation of a C-function into a Handel-C
form was performed in 30 minutes.
e« The generation of core form the Handel-C
description was about 15 minutes.

5- CONCLUSION

Consequently, the DK1 Design Suite development tod
isan ided solution for the fast and easy generation of 1P
cores. An HDL description gves better results (in terms
of Quadity of Results QOR, which is an area
performance etimation) than a Handel-C description.
Nevertheless the Handel-C language is easier to use
and the functionality is a direct trandation from the C-
function. This leads to a dose functional behaviour
between a C-function and the corresponding core. The
hardware and software modules are functionally similar.
Integrated in our prototyping process AVSynDEX, the
image-processng designer can develop the dgorithm by
means of the AV S toal, and then generate the IP cores
with DK1 Design Suite. The implementation of the
applicaion does not need highly speddist hardware
engineqs, the image-processing designer manages all
the development stages.

The result is a rapid prototyping process for the
implementation of red-time image-processng
applicdion. The development, the implementation and
modificaions and optimisations are performed in less
than 1 day.

REFERENCES.

[1] Nezan JF., Frese V., Deforges O.. "Fast
prototyping of parallel architectures: an Mpeg-2 coding
application. CISST proc., Las Vegas, USA, June 2001
[2] Frese V., Deforges O., Assouil M. "Rapid
prototyping for mixed architectures’. IEEE International
Conf. on Acoustics, Speech, and Signal Process, 5-9
June 200Q Istanbul, Turkey

[3] Grandpierre T., Lavarenne C., Sorel Y.: "Optimized
Rapid Prototyping for Red-time embedded
heterogeneous multiprocesors'. 7" Int. Work. on
Hardware/software Co-design, May 1999Rome, Italy.
[4] Advanced Visual Systems Inc. "Introduction to
AV S/Express'. http//www.avs.com.

[5] Celoxicalnc.: "DK1 Design Suite". User manual.

[6] WendtP.D., Coyle E.J., and a. "stadk filters'. IEEE
Trans. on Acoustics, Speech and Signal Processng,
Vol.ASSP-34, no4, pp 898911, August 1986

