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ABSTRACT

Many important problems in signal processing can be re-
duced to the selection of the parameters in a filtering struc-
ture. In this paper, we introduce a general selection criterion
that relies on the ability to characterize the desired signal to
be obtained at the filter output in terms of its probabil-
ity density function (pdf). Using this statistical reference,
the filter parameters are chosen in order to maximize the
likelihood of the filtered signal under the desired probabil-
ity distribution. We study the feasibility and asymptotic
properties of this approach and present an illustrative sim-
ulation example, where the Space Alternating Generalized
Expectation-maximization (SAGE) algorithm is used in the
numerical implementation of the proposed method.

1 INTRODUCTION

Many important problems in signal processing can be re-
duced to the adequate selection of the parameters in a filter-
ing structure so that it accomplishes some prescribed task,
such as deconvolution, system identification or pattern recog-
nition, to mention just a few examples. The criteria proposed
in the literature to solve such problems are diverse. One
possible classification, according to the type of reference em-
ployed to assess the quality of the filtered signal, yields three
categories: temporal reference, structural reference and sta-
tistical reference criteria. The methods in the first group
choose the filter coefficients to make the output signal equal
to, or highly correlated with, an a priori known reference sig-
nal. A classical example is the Minimum Mean Square Error
(MMSE) criterion and its adaptive implementations via the
well-known Least Mean Squares (LMS) and Recursive Least
Squares (RLS) algorithms [7]. In the second group, we find
those criteria that exploit the structure of the input signal,
as subspace methods [10] do. Finally, criteria that rely on
the statistical properties of the signal alone fall within the
third category. This includes Godard’s, or constant modu-
lus, criterion [6] and other techniques aimed at Independent
Component Analysis (ICA) [3]. Though appealing due to
their very mild requirements (only statistical independence
of the signals to be recovered), the lack of a more informative
reference limits the practical use of ICA algorithms, which
usually require the availability of huge observation records
and are subject to local convergence problems.

In this paper, we introduce a general selection criterion
that relies on the ability to characterize the desired signal
at the filter output in terms of a target probability density
function (pdf) which, in the situations of interest, depends
on the input signal and the filter parameters. Using this

statistical reference, much more informative than statistical
independence, the filter coefficients are chosen in order to
maximize the likelihood of the output signal under the tar-
get probability distribution. Similar techniques have been
proposed in order to solve specific problems in digital com-
munications, namely channel equalization and beamforming
[8, 9] and multiuser interference suppression [1], but a more
general study of the criterion, including its use in higher-
dimensional signal processing problems, has not been tackled
yet, to the best of our knowledge.

In the next section, we present a mathematical formu-
lation of the filtering problem that covers several applica-
tions of interest in signal processing. Next, in section 3, we
study the feasibility, asymptotic properties and limitations
of the proposed approach. An illustrative computer simula-
tion example, involving a numerical implementation of the
method via the Space-Alternating Generalized Expectation-
maximization (SAGE) algorithm [5], is presented in section
4. Finally, brief concluding remarks are made in section 5.

2 PROBLEM STATEMENT

Let us consider a stochastic dynamical system of the form

st~ plstlsoi—1]

Xt~ p[xi|so:t]

where t € {0} UN denotes discrete time, s; is the N x 1 signal
of interest at time ¢ (usually called the system state), s;.; :=
{s1,7 <1< j} denotes a set of vectors and x; is the L x 1
vector of observations at time ¢. We use an argument-wise
notation for probability functions where p|z] is the true pdf*
of the random vector z. Also, p[z|z] denotes the conditional
density of z given known realizations z.

We are interested in estimating the unobserved sequence
so.r from the observations xo.7 using a filtering structure
that implements some desired function ¢(-,-). Hence, we
define the estimate of s; as the N x 1 vector of the form

Yt 1= ¢ (Xe—rittr, W),

where the choice of 7 is usually made based on computational
or time complexity motivations, and our aim is to select the
parameter matrix W in order to make yo.7 a good estimate
of the signal of interest, so.7.

In the sequel, we will leave the choice of 7 implicit, for a
simpler notation, and let

yo.r := ¢ (x0.7, W)

1Or, alternatively, the true probability mass function (pmf), if
z takes values in a discrete set.



denote the whole filtered signal.

3 SELECTION CRITERION
Let us define

pw [yo.r] == p[p (0.7, W)] 1)

as the joint pdf of the filtered signal for a particular value of
the filter parameters?. We assume that the transformation
¢ (-, W) has the necessary regularity conditions to guarantee
the existence of pw[-]. Since a tractable and general analyt-
ical expression for the latter pdf is hard to find even for the
simplest cases, we only assume the availability of a statis-
tical reference, meaning that the probability distribution of
the optimal (in some sense) estimates is known and denoted
as po [yo.r]. We write po[-] without explicit reference to the
parameters in order to remark that this desired pdf is known
even if the parameter matrix that makes the estimates follow
that distribution is not known or does not exist.

We propose to compute the filter parameters solving an in-
verse model selection problem. Given an observation record,
zo.T, and a set of probability models, M, the aim in model
selection is to determine the element of M that yields the
highest likelihood of the data [2], i.e., model M, € M is
selected if, and only if,

P [zo:7| Mo

2] >0, VMeM, M+#M,,
p [ZO:TlM]

log

where log(-) denotes the natural logarithm. In our problem,
the data record is yo.r, the probability models are induced
by different choices of the parameter matrix, W, and there
is one extra model given by p,[-], which has been defined in-
dependently of W. Hence, if W is a complex-valued matrix
with dimensions R x C, we define a (possibly infinite) model
set as M := WUM,, where W C C*% and M, denotes the
target probability distribution. The objective is to find the
parameter matrix W, € W (if it exists) such that:

if yo.r = ¢ (x0:7, Wo)
then log (M> >0, YWeWw
pw [yO:T]

Given the available knowledge, the best choice is the param-
eter matrix that maximizes the likelihood of the data for the
target model, i.e., we select the parameter matrix as

(W) o log (po [p (%0, W)))

Wr = arg max{y(W)}, @)

3.1 Properties
When (2) is considered as an estimation method, the re-

sulting estimate, WT, complies with the results proved and
dicussed in this section.

Property 1 Wr, as computed in (2), is a Mazimum Like-
lihood (ML) estimate of W, if there ezists a function

Pa;w [Xo:1] X po [¢ (X0, W] (3)
that is a pdf for the process xo.T, with parameters W.

2Function pw[-] is not argument-wise, but it is completely de-
fined by the parameter matrix W instead. Hence, on writing
pw|z] we refer to the same function even if z is not distributed
according to the pdf p[¢ (xo.7, W)]. We assume this notational
convention whenever a subindex is used in a pdf.

Proof 1 Function pz,w|-|, depends on the matriz of param-
eters W. Hence, if it is a pdf,

Yz (W) o log (pz;w [x0:7])

is the likelihood of W for the available observations, Xo.r,
and it is apparent, according to definition (3), that Wr is
the argument that mazimizes 1o(W). O

Remark 1 Analogously, W1 is a Mazimum A Posteriori
(MAP) estimator of W, if a conditional pdf of the form

Pw [W]x0:7] X po [(p (Xo:T, W)] can be defined for W.

As a result of Property 1, if the pdf p.;w|[] exists, Wr
verifies all properties of ML estimators. In particular, it is
asymptotically unbiased and efficient (if efficient estimation
is possible).

The next two results yield asymptotic properties of WT,
and their proofs require the following conditions to hold:

C1. The target pdf is feasible using the filter structure, i.e.,
there exists W, € W such that po[-] = pw,[] according
to (1).

C2. The output random process y: = (xt_f:t.;_T,WT),

t = 0,1,2,..., is ergodic in the mean. This requires
process x; to be ergodic itself and mild regularity con-
ditions for ¢(-,-).

C3. The output random variables (rv’s), yo.r, are statisti-
cally independent.

As a consequence, we obtain:

Property 2 If no further condition is imposed on the target
pdf, Wr is a biased estimator of W,.

Proof 2 Using condition C3 (independence), the log-
likelihood of the filtered signal, yo.r = ¢ (%07, W), can be
written as

T
log (9o [yor]) = 3 log (po [yi]) (4)
t=0
Equality (4), together with condition C2 (ergodicity), yields
1 1w
Jim —log (po[yor]) = lim — glog (po [y])
= Epy [log(po)] (5)

where Epy, denotes statistical expectation with respect to the
random process with pdf Dy and we omit the argument of
the pdf in log(po) for notational simplicity. Let us define the
asymptotic estimator Woo = lim7_ Wr. Assuming the
this limit exists, we can combine equations (5) and (2) to
obtain

Woo = arg  max {Epyy [log(po)]} - (6)

In order to incorporate the latter result, we consider the
Kullback-Leibler Distance (KLD) [4] between the densities
Pw_ ] and pol'], which yields

KLD (b [Ipo) = B, [1og (222)] 20 @)



with equality if, and only if, py,_ = po which, due to condi-

tion C1 (feasibility), is equivalent to W oo = W,. It is useful
to rewrite (7) as

By, llog(po)] > Hyy.. (®)

where Hyy, = —Ep;, log (pwoo) 18 the differential entropy
associated to pw_[] [4]- It is apparent that equality cannot

be guaranteed in (8). Since Woo minimizes the left-hand
side in (8), it is simple to devise an ezample where pyw_[']
presents the same modes as po[-] but a lesser differential en-
tropy, hence

Hw, > —EBpy,  [log(po)] > Hyyr,»

and, as a consequence, KLD (pwm |lpo) > 0 and Weoo # Wo.
O

Property 3 If the target probability model, M,, is the one
with the minimum differential entropy over the set of proba-
bility models M, then Wr — W, as T — 0.

Proof 3 When the desired pdf yields the minimum feasible
differential entropy, equation (8) can be augmented as

By, [log(po)] 2 Hyyy, = Hw,

and, by virtue of property C1, the solution to (6) is We =
W,. O

Remark 2 Properties 2 and 8 also hold, without need to re-
sort to condition C8, when the estimator is originally defined
as

Wr = arg  max {1[) (W) = ZIOg (po [Yt])} ; 9)

t=0

since imr_ 00 9 (W) = Epy [Po] due to condition C2 alone.
If we abide by definition (9), however, condition C8 must be
claimed to prove Property 1.

The most important consequence of properties 2 and 3
is not quantitative but qualitative. They indicate that the
proposed method searches the filter parameters, W, such
that py,.[] presents (a) the same modes as po[] and (b) the
minimum entropy, i.e., the minimum variance around these
modes. Notice that many signal processing problems for
which this method is of interest are, ultimately, classification
problems® where we aim at ascribing y: to a particular mode
of po[] and, therefore, the entropy minimization feature of
the method can be, indeed, an advantage.

3.2 Global vs. Local Solutions

Properties P1 and P2 have been shown to hold for the global
solution in problem (2). However, the cost function #(-) is
multimodal for many systems and computing its global max-
imum can be difficult in practice. Although we will not ad-
dress this issue here due to lack of space, it is possible to
study the local maxima in 9(-) both analytically and graph-
ically in some simple cases [9].

3Thus the case is in digital communication applications, where
symbols must be detected, or in pattern recognition tasks, where
the reconstructed patterns must be subsequently classified.

4 SIMULATION EXAMPLE
Let us consider the simple dynamical system

St ~ U (S)
x¢ = Asi+g; (10)

where both s; and x; are 2x 1 random vectors (i.e., N =L =
2); A is an unknown 2 x 2 distortion matrix; gy ~ N (0, 02Q)
with unknown o and known Q, and U (S) denotes the uni-
form probability distribution over the known set of three
patterns § = {s(l),s(2),s(3)}.

The goal is to estimate the unobserved state signal so.r
from the observations xg.r. Since (10) is linear and the noise
and state processes are white, we simply set 7 = 0 and em-
ploy a 2 x 2 matrix filter,

Yt =@ (xt,T;,H_T,W) = fot, t= 0, ]., ..,T. (11)

in order to obtain statistically independent estimates, yo.7
(t denotes matrix transposition). The target pdf is mixture
Gaussian with modes at the patterns in S, i.e.,

3
_1 1 k)T -1 _g(k)
po[yt]“|2f| QZe Q(yt ) i (yt ),
k=1

where X is the filtered noise covariance matrix and | - | de-
notes the determinant of a square matrix. Since it is difficult
to choose an adequate value of 3 without knowledge of A,
we assume Xy = 071 and estimate (W,,0}) jointly. The
optimization problem to be solved is

P (W,UJ%) = —2(T+1)log (a;) +
s lrne®)! (5 )

T
+ Z log Z e 273
t=0 k

=1

(Wr.77)

arg max {¥ (W,O'J%)}. (12)

Being (12) a likelihood maximization problem, it is pos-
sible to solve it by applying the SAGE algorithm [5], that
yields the iterative updating rules

T -1 /7
VAV¥+1) - (Z xtx:{) (Z x:E; i [sI]) (13)
j=0 t=0
) + )
) ZtT=0 Eit1, [(YEH—I) - St) (yf*l) - St)]
. 2(i+1)
g9f,T =

N(T +1)
(14)
where, for some function ¢(-) of the state vector s,

E;,;j [#(st)] denotes the a posteriori expected value of ¢(st)
under the desired probability model,

By (6601 = 30 (59 o [10,522] ()
k=1

) oo\t
and y® = (W(Tf)) x¢. The posterior pmf in (15) can be
analytically obtained using the Bayes theorem.
Figure 1 plots the normalized histogram of yo.r =

[ (XO:T, WT) with system parameters

A A



Q= 0.393 0.008 1 -038
| 0.008 0.566 03 -1 |-

The Signal-to-Noise Ratio (SNR), defined as

| ana a=|

trace (AE,,St [sts;r] Af)
a2trace (Q) ’

SNR = 101log,,

is set to 15 dB. The modes corresponding to the patterns in
S are clearly observed.

Finally, figure 2 plots the normalized Mean Square Error
(MSE), defined as

S trace ((s: — yo) (se —y2)")

MSE =
S5, trace (stsI)

bl

for several values of the SNR. The system parameters are:

S = 7.06 —9.65 9.23
- —7.88 [’| 472 |’| —6.18 ’
and A and Q like in the previous figure. We observe that
the proposed algorithm attains the same performance as the

Wiener filter, that requires knowledge of A and ¢? and is
optimal in terms of MSE for the class of linear matrix filters.

o o o
IS o © =

relative frequency

I
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Figure 1: Normalized histogram of the filtered signal.

5 CONCLUSIONS

‘We have introduced a general criterion for selecting the pa-
rameters of arbitrary filtering structures. The method re-
quires a characterization of the desired signal in terms of its
pdf and consists of fitting the filter parameters in order to
maximize the likelihood of the output signal under this tar-
get pdf. The statistical properties of the fitted parameters
have been analyzed and the performance of the method has
been illustrated via computer simulations.
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Figure 2: MSE for several values of the SNR.
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