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ABSTRACT

A new particle �ltering detector is proposed for joint esti-
mation of channel model coeÆcients, channel tracking, and
signal detection over 
at Rayleigh fading channels. The de-
tector employs a hybrid importance function and a mixture
Kalman �lter which result in a highly eÆcient implemen-
tation. In addition, by considering the practical limitation
of the system and physical interpretation of the adopted
AR(2) channel model, we realize a fully blind particle �l-
tering implementation. Simulation are provided to show
the performance of the proposed detector.

1. INTRODUCTION

Detection of digital signals over 
at fading distorted chan-
nels plays an important role in wireless transmissions of
voice and data. The research on the topic has drawn much
interest in the past decade. Especially, a class of detec-
tors employing the maximum-likelihood sequence estima-
tion (MLSE) techniques has been extensively studied [1].
These detectors usually implement the channel tracking and
signal detection separately. It has been shown that this ap-
proach yields poorer performance than strategies based on
joint implementations of tracking and detection.

Recently, novel particle �ltering detectors were proposed
for the problems of joint channel tracking and signal detec-
tion [2, 3]. These detectors not only achieve fully blind
channel tracking but also overcome the problem of error
propagation resulting from a decision feedback implementa-
tion. Also, they allow for both Gaussian and non Gaussian
ambient noise as well as parallel implementations.

An important feature of particle �ltering detectors is
to impose a parametric structure such as AR and ARMA
models on the fading channels. The parametric modeling
of the channels has been shown to represent the underlying
channels of many systems satisfactorily [4], which facilitates
the implementation of the particle �ltering detectors. How-
ever, a common assumption is that the model coeÆcients
(AR or ARMA) are known to the detectors in advance. In
[5], a hybrid algorithm is proposed to further integrate the
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estimation of the model parameters within the particle �l-
tering detectors. This novel detector employs a recursive
least square algorithm for the estimation objective. How-
ever, pilot symbols are required in the implementation to
avoid ambiguity.

In this paper, a new detector is proposed for joint es-
timation of channel model coeÆcients, channel tracking,
and signal detection. The proposed detector is constructed
under a full particle �ltering paradigm. In particular, a
hybrid importance function is introduced which, together
with the mixture Kalman �ltering (MKF) [2], reduces sig-
ni�cantly the computational complexity of a generic im-
plementation of particle �ltering. Furthermore, an AR(2)
process is adopted to model the fading channels. This mod-
eling imposes a direct link between the model coeÆcients
and the underlying fading channel. The link enables us to
resolve the ambiguity in the detection by considering the
physical limitations of the system, which allows for a fully
blind implementation of the particle �ltering detector. Sim-
ulation results are provided that show the performance of
the proposed detector.

2. PROBLEM FORMULATION

We consider detection of digital signals transmitted through

at Rayleigh fading channels. At the transmitter, the mod-
ulated M -ary PSK data sequence st is passed into a pulse
shaping �lter to form the baseband signal s(t) and then
transmitted through a 
at Rayleigh fading channel. At the
receiver, the received baseband signal y(t) is �rst fed into
a matched �lter and then sampled with a symbol rate 1=T .
The resulting sampled sequence yt can be expressed as

yt = htst + et t = 1; 2; 3; � � � (1)

where ht and et are the complex fading coeÆcients and ad-
ditive ambient noise. The noise et is assumed to be complex
Gaussian with zero mean and variance �2. Here, the fad-
ing channel is a Rayleigh process, and thus, the dynamic
characteristics of the fading coeÆcient ht depend on the
maximum Doppler spread

fD = v=� (2)

where v denotes the speed of the mobile and � is the carrier
wavelength. When v is constant, ht is modeled by the Jakes'



model as a stationary, circular complex Gaussian process
with zero mean and autocorrelation function [10]

rh(m) = Efhnh�n�mg = PJ0(2�fdTm) (3)

where P denotes the power of the fading process and J0(�)
denotes the zero order Bessel function of the �rst kind. The
direct application of the Jakes' model in our computation
leads to intractable solutions. However, AR processes can
often be used to approximate the Jakes' model with satisfac-
tory accuracy. In this paper, a second order autoregressive
(AR) process is adopted such that

ht = �a1ht�1 � a2ht�2 + vt (4)

where a1 and a2 are the model coeÆcients, and vt � CN (0; �2
v).

The coeÆcients are closely related to the physical charac-
teristics of the underlying fading process which will be dis-
cussed in detail in Section 3.3. Of our interest here is the
detection of the transmitted symbol st without knowing the
instantaneous value of ht. In many schemes, a1 and a2 are
assumed to be known for the detection, and the estimation
of a1 and a2 is done separately. However, here we assume
to have no knowledge about a1 and a2, and we intend to
estimate these coeÆcients, track the channel ht, and detect
st at the same time. To that end, we further assume that
the driven noise of the AR process �2

v and the noise variance
�2 are known to the receiver. It should be noted that the
proposed algorithm can be easily extended to include them
as unknowns.

3. THE PARTICLE FILTERING DETECTOR

3.1. State space modeling of the problem

We �rst formulate a state space representation of the sys-
tem. It can be expressed as(

a1;t = a1;t�1; a2;t = a2;t�1

ht = Dht�1 + gvt
yt = gThtst + et

(5)

where ht = [ht ht�1]
T, g = [1 0]T, and

D =

�
�a1;t �a2;t
1 0

�
:

De�ne at = [a1;t; a2;t]
T. At any instant of time t, the un-

knowns are st, ht, and at, and our main objective is to
detect the transmitted signal st sequentially without send-
ing pilot signals.

3.2. The particle �ltering solution with hybrid im-
portance functions

Particle �ltering is a sequential Monte Carlo sampling method
built upon the Bayesian paradigm [6, 7]. From a Bayesian
perspective, at time t, the posterior distribution p(stjy0:t)
is the main entity of interest. Due to the nonlinearity of
the model (5), the analytical expression of p(stjy0:t) can-
not be obtained. Alternatively, particle �ltering approxi-
mates p(stjy0:t) by using stochastic samples generated us-
ing a sequential importance sampling strategy. Due to

the presence of the nuisance parameters, the objective is
to sample from joint posterior distribution p(st; at; htjy0:t).
First, note that given at and st, (5) is linear in ht. There-
fore, the MKF can be used to marginalize out the nuisance
parameter ht. Our objective is then to generate samples

from the distribution p(st; atjy0:t). Second, de�ne x
(j)

t =

fa(j)t ; s
(j)
t g and suppose that at time t�1, we have collected

N sets of samples x
(j)

0:t�1 = fx(j)0 ; � � � ;x(j)t�1g with weights

w
(j)

t�1, j = 1; � � � ; N . In particular, the weighted samples

fxj0:t�1; w
(j)

t�1g
N
j=1 are distributed approximately according

to p(x0:t�1jy0:t�1). When a new observation yt arrives, the
update of the sample sets from t � 1 to t is carried out as
follows:

The Particle �lter
� For j = 1; � � � ; N

{ Sample x
(j)

t from an importance function

q(xtjx(j)0:t�1;y0:t) and set x
(j)

0:t = fx(j)0:t�1;x
(j)
t g.

{ Calculate the weight by

�w
(j)
t = w

(j)

t�1

p(x0:t
(j)jy0:t)

p(x
(j)

0:t�1jy0:t�1)q(x
(j)

t jx(j)0:t�1;y0:t)
(6)

� For j = 1; � � � ; N , normalize the weights by:

w
(j)

t =
�w
(j)
tPN

j=1
�w
(j)
t

(7)

where q(x
(j)
t jx(j)0:t�1;y0:t) is an importance function which

must be speci�ed. The choice of the importance function is
essential because it determines the eÆciency as well as the
complexity of the particle �ltering algorithm. Two stan-
dard choices of the importance function are the posterior
and the prior importance functions. The posterior impor-
tance function is considered optimal because it minimizes
the variance of the importance weights. Here, we observe
that, due to the presence of a1 and a2, the calculation of the
posterior importance function leads to intractable weights.
Hence one would usually resort to using the prior impor-
tance function. However the use of the prior importance
function is often ine�ective and leads to poor �ltering per-
formance. Here, we adopt a hybrid importance function [8],
which is expressed as

q(st; atjs(j)0:t�1; a0:t�1;y0:t) (8)

= p(stja(j)0:t ; s
(j)

0:t�1;y0:t)p(atja
(j)

t�1)

= p(stja(j)0:t ; s
(j)

0:t�1;y0:t)Æ(a
(j)

1;t�1)Æ(a
(j)

2;t�1) (9)

where a0:t and s0:t are de�ned in the same way as x0:t,

a
(j)

t = a
(j)

t�1, and Æ(�) is the Dirac delta function. The last
equality is obtained based on the state equations a1;t =
a1;t�1 and a2;t = a2;t�1. The corresponding weight is com-
puted by

w
(j)
t = w

(j)

t�1p(ytja
(j)

0:t ; s
(j)

0:t�1;y0:t�1)

= w
(j)

t�1

X
st2A

p(ytjst; a(j)0:t ; s
(j)

0:t�1;y0:t�1) (10)



where A = fA1; � � � ; AMg is the alphabet of st. Note that
the hybrid importance function (8) is a combination of the
posterior and the prior importance functions. Intuitively,
due to the use of observations, the hybrid importance func-
tion is more e�ective than the prior importance function.
In addition, it is easier to implement than the posterior im-
portance function in that the sampling from (8) and the
computation of the weight in (10) can be readily carried
out.

Now, we discuss the sampling of st and at from (8) and
the calculation of the weight (10). First, we notice that
no sampling for at is needed which simpli�es the sampling
process. However, the absence of sampling introduces lack
of diversity on at. To address this problem, kernel smooth-
ing techniques can be used during the resampling procedure
which will be discussed in Section 3.4. As for st, since it is
discrete, the sampling of it from (8) only requires the eval-
uation of the importance function on A. In particular, if by
assuming a uniform prior on st, the sampling distribution
becomes

p(stja(j)0:t ; s
(j)

0:t�1;y0:t) / p(ytjst; a(j)0:t ; s
(j)

0:t�1;y0:t�1) (11)

Now, from (10) and (11), we see that both the sampling

of st and the calculation of the weight w
(j)

t are achieved

by computing p(ytjst; a(j)0:t ; s
(j)

0:t�1;y0:t�1); 8st 2 A. This
distribution is the likelihood function after marginalizing
out ht and can be obtained from the predictive step of the
Kalman �lter and it is given by

p(ytjst; a(j)0:t ; s
(j)

0:t�1;y0:t�1) = N (m
(j)

t ; c
(j)

t ) (12)

where m
(j)

t = gTD
(j)

(t�1)
�
(j)

t�1st and c
(j)

t = gT�
(j)

t g+�2 with

�t = D
(j)

t�1P
(j)

t�1(D
(j)

t�1)
T + �2

vgg
T, and

D
(j)

t�1 =

�
�a(j)1;t�1 �a(j)2;t�1

1 0

�
:

Moreover, �
(j)

t�1 and P
(j)

t�1 are computed from the update

steps of the Kalman �lter that are expressed, at t as �
(j)

t =

D
(j)

t �
(j)

t�1+K
(j)

t (yt�m
(j)

t ) and P
(j)

t = (I�K(j)

t gTs
(j)

t )�
(j)

t

where K
(j)
t = �

(j)
t gc

(j)�1
t s

(j)
t .

Now we have identi�ed every element required in the im-
plementation of the particle �ltering algorithm. The result-

ing weighted samples fs(j)t ; w
(j)

t gNj=1 approximate p(stjy0:t),
and the minimum mean square error (MMSE) estimator of
st can be easily calculated according to

ŝtMMSE =

NX
j=1

s
(j)

t w
(j)

t : (13)

3.3. Initial sampling of the AR(2) coeÆcients

At the beginning, initial N samples of a0 are drawn from
a prede�ned prior distribution. Usually a uniform distribu-
tion de�ned on the whole variable space is chosen. However,
for our problem, the sample space of the uniform distri-
bution can be con�ned to enhance the eÆciency and the
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Figure 1: Plot of the sample space for the coeÆcients a1 and
a2 of the AR(2) channel model. The area inside the trian-
gle corresponds to the coeÆcients which induce stable and
minimum phase process. The shaded area is a constrained
region derived from a practical system.

performance of the proposed algorithm by considering the
physical feature of the system.

First, to ensure the stability and the minimum phase of
the AR(2) process, the variable space of a0 is de�ned in a
triangle region depicted in Figure 1 and the sampling from
the uniform distribution de�ned on the region can be done
as in [9]. However, ambiguity in the estimation of a1 and a2
exists in this triangle region. The ambiguity is an inherent
problem in blind detection. For instance, when the trans-
mission is BPSK modulated, if �a1 and �a2 were one set of
the estimates, then ��a1 and �a2 would also be a legitimate
set of the estimates. To overcome the ambiguity, further re-
strictions in the sampling space need to be imposed. This
can be achieved by considering the relationship between the
AR coeÆcients and the physical parameters of the under-
lying fading channels. It is shown in [10] that the AR(2)
coeÆcients are chosen by

a1 = �2rd cos(2�
d=
p
2) and a2 = r

2
d (14)

where rd is the pole radius of the AR model and 
d = fdT
is the normalized maximal Doppler frequency. Since rd de-
termines the steepness of the power spectrum of the AR
process, to closely approximate the Jakes' model, rd is often
taken between [0.9, 0.999]. Furthermore, an upper limit on

d can be easily obtained from a practical viewpoint. For
example, for a system with a carrier frequency of 2G Hz,
a vehicle speed of 75 mile/hour, and symbol rates for all
transmissions greater than 3600 Hz, the maximal Doppler
frequency 
d must be less than 0.062. Then, by using the
practical limits imposed on rd and 
d, we can obtain from
(14) a re�ned region for a1 and a2, and this region is au-
tomatically in the triangle region of a stable AR process.
As a consequence, the initial samples of a1 and a2 can be
obtained by �rst sampling rd and 
d uniformly from the
imposed regions and then compute the corresponding co-
eÆcients from (14). In Figure 1 with the shaded lines, we
also plot the region corresponding to rd 2 [0:9; 0:999] and

d 2 [0; 0:1] . We see that the region is much constrained
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Figure 2: Plot of the BERs of the proposed particle �ltering
detector and the MKF with known AR coeÆcients

compared with the triangle region.

3.4. The resampling procedure

The resampling procedure [6] can be further incorporated
to enhance the eÆciency as well as the performance of the
proposed particle �ltering algorithm. However, since no
sampling is involved for a1 and a2 throughout the imple-
mentation, the algorithm with simple resampling does not
have the ability to rejuvenate a1 and a2 with the arrival of
new observations. Thus, the accuracy of the �nal estimates
of a1 and a2 depends greatly on the initial samples. To
overcome this drawback, we adopted a scheme proposed in
[11] which combines the auxiliary particle �lter and a kernel
smoothing technique. Modi�cations are made to adapt the
use of the hybrid importance function. In the implementa-
tion, when resampling is needed, the proposed procedure is
inserted to replace the original particle �ltering step.

4. SIMULATION

The performance of the proposed particle �ltering detector
is studied in this section. To simulate a fading channel,
the coeÆcients of the AR(2) model were taken as a1 =
�1:9602 and a2 = 0:9701. They re
ect a physical scenario
of a normalized maximal Doppler spread of 0.0224. This
AR process is normalized to have a unit power, and thus
the signal-to-noise ratio (SNR) is obtained as 10 log(1=�2).
The transmitted signal is BPSK modulated with di�erential
coding.

In Figure 2, we provide the bit error rates (BERs) of the
proposed detector under various SNRs. In the implementa-
tion of the proposed detector, 300 trajectories were main-
tained at every time instant. In particular, initial samples
of a1 and a2 were drawn from the shaded region in Figure 1.
To compute the BER at a given SNR, a symbol stream was
transmitted continuously until 200 errors were collected. In
the same �gure, we also plotted the performance of the
MKF with known AR coeÆcients. There were 200 trajec-
tories and similarly 200 errors were collected to obtain each
BER estimate. Apparently, the proposed detector has the
similar performance as the MKF.

5. CONCLUSIONS

A particle �ltering detector has been proposed for fully
blind estimation of the parametric channel coeÆcients, chan-
nel tracking, and signal detection. A novel hybrid impor-
tance function has been introduced which leads to eÆcient
implementation of the detector. The physical interpreta-
tion of the AR(2) channel model and the underlying fad-
ing channel has been used to further enhance the eÆciency
of the detector and to avoid ambiguity in the detections.
The simulation results demonstrate good performance of
the proposed detector.
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