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ABSTRACT

Some communication systems embed pilot tones into the
data spectrum to aid the receiver in synchronization, which
may result in a DC offset of the baseband data. This paper
motivates the use for adaptive estimation of the DC offset at
the receiver, and proposes a Constant Modulus cost function
that is jointly minimized over the DC offset estimate and the
equalizer parameters. It is shown that for an arbitrary DC
offset, the CM cost function admits local spurious minima in
terms of equalizer settings, and that matching the DC offset
at the receiver to the level inserted at the transmitter causes
both local and global minima in terms of equalizer settings.
Extrema of the cost function in terms of a DC offset are
derived and classified, and adaptive methods for DC offset
estimation are introduced.

1 Introduction

To achieve the low error rates necessary for high quality
of services in modern digital communications systems, it is
common to embed training or pilot signals into the data
packets or data spectrum to aid the receiver in equalization
and/or in synchronization. For example, the 10 Megabaud
terrestrial broadcast of Digital Television (DTV) signals in
the United States uses a single-carrier, single sideband mod-
ulation scheme (known as 8VSB for 8-level Vestigial Side-
band Modulation) that contains a bi-level training sequence
inserted at the header of each data frame, occuring every
24ms, to aid in adaptive equalization. Furthermore, a nar-
rowband pilot tone is inserted into the lower band edge of the
8-VSB data spectrum, containing about 7.5 percent of the
power of the data spectrum, to aid in carrier synchronization
[1]. Unfortunately, the training sequence is both too short
and too infrequent to be reliable, and the pilot tone may do
more harm than good if not properly processed.

Our work studies the effect of a DC offset on equalization
due, for example, to pilot tone insertion, and proposes blind
methods to estimate and remove the DC offset by jointly
minimizing a Constant Modulus (CM) cost function [2] over
equalizer parameters and a DC offset estimate. Our results
can be described by the following three observations. First,
we show that with an arbitrary DC offset the CM cost func-
tion admits local spurious minima in terms of the equalizer
setting. Second, if the DC offset at the receiver is assumed
to be equal to the DC offset inserted at the transmitter,
which is equivalent to neglecting the ISI caused by the chan-
nel, then only half of the CM equalizer minima remain un-
changed, i.e., as if the system has no DC offset. Moreover,

these global minima lead to source estimation with polarity
that can be predicted by the sign of the DC offset. Third,
provided a power constraint on the signal space is satisfied,
the DC offset estimate, computed with a joint optimization
of the CM cost function, is guaranteed to converge to the de-
sired solution, and the equalizer parameters are guaranteed
to converge to the desired solution.

Though we are immediately interested in application to
DTYV signals, the sequel is generalized to an arbitrary DC
offset inserted at the transmitter and is organized as follows.
§2 describes the data model and CM receiver basics. §3 com-
pares the effects of the DC offset on CM and Mean Square
Error (MSE) receivers. §4 contains an analysis of the joint
CM optimization over DC offset estimation and equalizer
settings. Section 5 contains simulation results. Concluding
remarks are contained in §6.

2 Model

2.1 Data model

The output y(n) of a combined channel-equalizer system is
described by the equation,

y(n) = h's(n) + f'w(n). (1)

The [-th component of the vector source s(n) is denoted
ai(n) + p. The vector s(n) contains a snapshot of sym-
bols representing the signal of interest coming from a sin-
gle source or multiple sources. The sequence {a;(n)}ncz of
source symbols defines a zero-mean, sub-gaussian stochastic
process. We denote IE{a’} as the variance of the unbiased
source signal. The constant DC offset p added to the source
symbols is, for example, a pilot signal introduced to help
the receiver in carrier synchronization. Additive perturba-
tions on the channel are included in the noise vector w(n)
of dimension N. The noise w(n) is assumed to be Gaussian,
temporally and spatially white and zero-mean with variance
E{w®}. The noise contribution is filtered by the linear re-
ceiver f of same dimension. The vector h denotes the com-
bined finite impulse response of the channel-receiver system.
We assume that h and s(n) are of length M. Finally, we
assume that all quantities are real-valued.

2.2 CM receiver

The CM equalizers are denoted by f* and defined as the
minima of the criterion,

R R 2
IE(f,5) = B{((y(n) — )’ = )"} 2
The parameter p is introduced in the receiver to compensate
for the DC component p that is inserted at the transmitter.



The local minima p of JS) are denoted Px. The so-called
dispersion constant of the CM criterion is denoted by . The
purpose of this paper is to describe the effect of the DC offset
on the CM equalizers and to compare these solutions to the
CM equalizers when the source is unbiased.

3 Effect of DC offset on equalizer settings

3.1 Observations with regards to CM receivers
When there is no DC offset inserted at the transmitter, in the
absence of noise and under the assumption that all global im-
pulse responses h are reachable, the spike vectors h* = +e,
(for which the non-zero component +1 is at the (k + 1)—th
position) are global minima of the CM cost function with
v = g}g:{, [3][4]. However, when the transmitter inserts a
DC offset and the source is biased as in model (1), then the
minima settings of the CM cost function (2) depend on the
DC offset p introduced at the source. In particular, if the DC
offset estimate of the received signal p is not properly chosen,
then the CM criterion admits local spurious minima. This
observation is described in Proposition 1.

Proposition 1. With v = E%Z;% , for a given p = p,
only the vectors h* = sign(p)e, for k € {0,---,M — 1}
are global minima of the criterion Jc(dc)(ﬁ, p). The vectors
h* = —sign(p) e, are no longer global minima of the crite-
rion Jc(dc)(h,ﬁ) as they are for the CM criterion when the
source is unbiased.

Proposition 1 describes what is happening to the minima
of the CM criterion if the DC offset p introduced at the source
is removed at the output of the CM receiver when that offset
is known by the receiver. By selecting p = p, this correction
of the bias, which seems intuitively reasonable, leads to a
surprising result. Only half of the global minima of the CM
criterion for an unbiased source remain global minima of
the criterion when the source is biased and when such a
correction is applied. The polarity of the global minima is
decided by the sign of the DC offset at the transmitter.

Figure 1 further illustrates Proposition 1 by showing the
cost surface of the criterion (2) for a two-tap global impulse
response h and BPSK signaling (a(n) = 1) with p = p =
0.25. The criterion admits a pair of desirable global minima
(0,1) and (1,0). However, the minima at negative polarities
have moved away from spike vectors. These local minima
have contracted to approximately (—0.7,0.1) and (0.1, —0.7).
Notice that selecting p = p is not necessarily a good choice.
In general, criterion (2) admits local spurious minima with
respect to the equalizer settings.

Figure 1: Contour of CM cost function, p = p = 0.25.

3.2 Comparison with MSE settings
Next we compare the results described in Proposition 1 for
the CM cost function with a MSE cost function. A MSE
cost function for the biased signal is given by

TS (£,8) = B {(y(n) — p — a(n — d))*} ®)

where d is a delay between 0 and M —1. In the absence of
noise, minimization of the MSE criterion with respect to the
equalizer settings admits a global impulse response of the

form
_ w forl #d
hl—{ l+w forl=d @
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where w = p]’é{g’} , R= %ggiﬁhzi-

Notice that for an arbitrary choice of p and p the global
minimum of the MSE criterion is biased by the factor w
which is a function of p and p. However, for the specific case
of p = p we have w = 0, which is precisely the solution that
leads to a perfect source estimation. This observation is in
contrast to our results for the CM criterion as illustrated in
the previous subsection. Notice that the result w = 0 can be
achieved as well with the choice p = IE{y} =p>_, h.

4 DC offset estimation

In this section we describe simple solutions for the estimation
of the optimum DC correction p. To understand how the
DC offset affects the CM criterion, we first rewrite the cost

function J*° (f,p) as follows:

TS, 9) = o(£,0) + £ +68* (B} - 1) (9)

where £ = p — IE{y} and it is understood that J.(f,0) =
E{((h'a(n) + f'w(n))” — 7)2} is the unbiased CM cost
function. The terms £ and £* can be seen as additive con-
straints on the unbiased CM criterion. The term IE{z?} de-
notes the power of the receiver output of the unbiased signal
defined as z(n) = h'a(n) + flw(n).

Estimation of the DC offset can be deduced by an opti-
mization of the cost function J{** (f,p) with respect to the
parameter p. Next, we furnish a description of the minima
P« of the cost function Jide) (f,P), simple methods for the es-
timation of the optimal DC offset, and conditions for global
convergence of the algorithms.

4.1 Offset minima of the CM cost function
The extrema of (5) with respect to the DC correction term
p are given in Proposition 2.

Proposition 2. The extrema px of J\*° (f,P) are given by,
1. p« = E{y}
2. p. = E{y} + /v - 3E{z*}

If (IE{z*} — 1) is positive, then solution 1 corresponds to a
minimum and solution 2 does not ezist. If (IE{z"} — 1) is
negative, then solution 1 corresponds to a global mazimum
and solution 2 describes two global minima.

For the solution p. = IE{y}, the joint cost function
JY(f,p) is equivalent to the CM cost function with an
unbiased source. Therefore, no local spurious minima for
the equalizer settings are introduced. Notice that this so-
lution corresponds to the case where the power constraint
(IE{z"} — %) is positive and describes a region where CM
equalizer extrema settings are located for an unbiased source
[6][6]. In the next subsection we describe adaptive algorithms
that provide an estimation of this desired solution.

4.2 Adaptive algorithms for DC correction

The DC correction term can either be calculated directly
with an empirical estimator of IE{y}, or deduced as a sta-
tionary point of a stochastic gradient algorithm minimizing



{de) (f,P) over p. The first approach admits a simple online
calculation of the mean of the equalizer output by use of a

leaky integrator as follows,
p(n+1) =p(n) + a(y(n) — p(n)) (6)

where usually « is small. Alternatively, a gradient optimiza-
tion technique of the CM criterion leads to an adaptive al-
gorithm given by,

p(n+1)=p(n)+enty (7)
where &, = ((y(n) —p(n))? — ’y) (y(n) — p(n)) and where
e = —sign (IE{z’} — 1). The scalar y is a positive number,

usually small, known as the step-size of the algorithm.

Observe that there is little difference in numerical compu-
tational complexity between the two approaches. The term
&y in equation (7) need already be computed for the adapta-
tion of the CM equalizer taps, and is therefore available for
the adaptation of the DC correction term in (7). However,
the polarity indicator € needs to be calculated to evaluate
the sign of the power constraint and guarantee convergence
to the desired solution p. = E{y}.

If the polarity indicator € is not calculated, to save com-
putations, then we need to identify the extrema of the joint
cost function Jc(dc)( f,D) with respect to the vector f, to ver-
ify the non-existence of local spurious minima. Prgposition
3 identifies and classifies these extrema.

Proposition 3. Assuming that all vectors h are achievable
in the absence of noise, the joint optimization of the criterion
Jide) (f; D) leads to channel-equalizer extrema h* of the form,

h'=h") e (8)
kcv

where v denotes the set of indices associated to non-zero com-
ponents of the vector h*. The cardinality of v, i.e., the num-
ber of non-zero components of h* is denoted by |v|, and h*
is a scalar. The extrema (8) are classified as follows:

1. For p. = IE{y}, we have

e h* =0 (mazimum),

e h* = :I:,/'y% e, for k € {0,---,M — 1} (global

minima,),
o b=+ /:—g Mm Y wew & with [v] > 1 (saddle
points).

2. For p. = E{y} + /v — 3IE{z%} we have,
e h* =0 (minimum),
e h* = + 7% 92_"'30 e, for k € {0, ,M — 1}
(global mazima)

o b =%/, 1/#36\14 Y ies & with [v] > 1 (sad-

dle points)

4
where Kq = EE—{{(:IQT}Q' is the kurtosis of the unbiased source.

Proof: See Appendix.

Proposition 3 classifies extrema of the equalizer settings
associated with each of the DC correction solutions furnished
in Proposition 2. At the solution p. = IE{y}, the joint CM
cost function is equivalent to the CM cost function with an
unbiased source. In the absence of noise, and for a per-
fectly invertible channel, the minima of the joint cost func-
tion therefore provide perfect source recovery. Thus when

the power constraint (FE{2°} — 1) is positive, the stochas-
tic optimization of the joint CM criterion is guaranteed to
converge to desirable equalizer settings and DC offset.

At the solution p., = IE{y} + /v — 3IE{22}, desirable
equalizer settings which furnish a perfect estimation of the
source are defined as the global maxima of the joint CM cri-
terion. These global maxima can be achieved by gradient
ascent, rather than gradient descent. However, the choice of
gradient ascent or descent of equalizer coefficient adaptation
also requires the calculation of a polarity indicator e. Ef-
fectively, the issue of the polarity selection has been moved
from DC correction adaptation to equalizer parameter adap-
tation.

5 Simulations

An example of DC offset estimation is given in Figure 2.
The flat dashed line is the value of p = 1.25 inserted at the
transmitter. Line #2 corresponds to the estimation given
by the leaky integrator in equation (6). Line #3 corre-
sponds to the estimation by the stochastic gradient descent
in equation (7). Algorithms (6) and (7) both use the same
parameter &« = p = 0.01. The channel taps are given as
(1,-0.6,0.3,0.1), and N = 16 is the length of the equalizer
with BPSK signaling. Observe that the estimation furnished
by the stochastic gradient in equation (7) tracks well the op-
timum estimate corresponding to line #1. Both algorithms
converge near the flat line corresponding to the DC offset as
the eye is open(ed). The residual error is due in this case
to a lack of perfect invertibility of the channel with a finite
length equalizer. In practice either estimation method is ap-
plicable. The jitter of the leaky integrator can be reduced
by reducing o.

DC estimate: Leaky integrator
1

s DC estimate: CM

N

[GEC)]

0 3 0 3
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Iteration number, k ;¢ tteration number, k 1ot

Figure 2: DC offset estimate. Comparison between the
empirical mean, exact mean and gradient stochastic.

6 Conclusion

This paper has motivated the use for adaptive estimation of
DC offset in a communication system that has a DC offset in
the data spectrum, inserted at the transmitter. A Constant
Modulus cost function was proposed and analyzed, which is
jointly minimized over DC offset estimate and equalizer pa-
rameters. Adaptive methods were introduced, and computer
simulations illustrate our results.

Appendix: Proof of Proposition 3
1. Extrema characterization
The CM cost function optimized over p can be written as,
T (f ) = Jo(£,0) — X (B{z%} - %)2, where ) is given
by A = 0 for the solution 1 (i.e., p» = E{y}) and A = 9
for the solution 2 (i.e., p«» = IE{y} £ /v — 3IE{22}). In the

absence of noise, the criterion can be rewritten in terms of




the global impulse response h,
I (b ps) = (ke = 3)E{a"}|Rlls +3E{a’} |IRll>  (9)
~2yB{a*} |1l ~ NB{a’ YR ~ 3)° +7°.

The extrema h”* are the solutioygc)zeroing the gradient
with respect to p of the criterion J;*“/. A straightforward

calculation leads to the system of equations
4(ka — 3)E{a"}(hi)* +4QE{a’}Y*(3 = Nhj,
~4y(B{a’} = 3)*hi =0 (10)

for k = 0,---,M—1, where @ = Y, (hi)’. If all global
impulse responses h can be reached, the system of equations
above is not coupled. Under this assumption, the extrema
of the biased CM criterion are given by

5 0 or
(h;;) = { (1— A) 7=3Qa2 (11)

3/02(kq—3)"

We can use the equation above to compute the norm of A*
defined by Q@ = 3, (hi)>. We get,
A P~
=(1-= 12
@=( 3)na+3(P—1)—)\P (12)

where P > 1 denotes the number of non-zero components.
If we plug this equation into (11), we get the expression of
the components (h})> as a function of P and the statistics
of the source. We have,
A Y
h* 2: h* 2: 1-2
(hi)”=(R")"=( 3)03(na+3(P—1)—)\P)

(13)

The extrema can therefore be classified into three categories,
e h* =0 when P =0
. Q*:4L(17—W’) e, when P =1

naag 1-A/Kq

(1l — 2y — 7
e hr=(1 3)05(%4_3(13_1)_/\;,) Y okew & When P > 1

To classify the extrema we need to characterize the sign of
the quadratic form z' H(h*)z, where H(h*) denotes the Hes-
sian of JY9)(#,p.) on each setting.
2. Stability of the extrema

The (j, k) component of the Hessian matrix H(h") is given

by,

52740 +8hlh;02(3 — \) forj # k
3 .:% =< 12(ka — 3)ot(h*)? 4+ 802(3 — M) (h*)*+
3Gk 4Nc2(3—N) — 4yo2(1 — A/3) forj =k
(14)

Using (12) and (13) in the previous equation, the result can
be simplified to

32Jc(dc)_§ v(3—X) +(3—X),or0 forj#k
Ohjdhy 3 ka+3(P—1)—AP | 0a(ka—X) forj=k
(15)
when P # 0, and
92l 0 forj # k 16)
dh;dhy ~ | —3702(3—X) forj=k
when P = 0.

2.1 Stability of the solutions A* =0

The Hessian is a diagonal matrix defined by H(0) =
—3~02(3 — A\)In. For A =0, the quadratic form z'H(0)z =
—4ya?||z||* < 0 is always negative. The extremum h* = 0 is
thus a maximum. The result is inverted when A = 9. Indeed
in this case the quadractic form z' H(0)z = 8yo2||z||*> > 0 is

always positive. The extremum h* = 0 is thus a minimum.

2.2 Stability of the solutions h* = h” ¢,
The Hessian matrix is of the form H(h%e,) =

%%I}u. For A = 0, we have z'H(h" ez =
8vyor|lz]]> > 0. The spike vectors h* = h* e, define there-
fore a set of minima. For A = 9, we get z'H(h"¢;)z =
—16702||z||*> < 0. In this case, the vectors h* = h* ¢, define
a set of maxima.

2.3 Instability of the other extrema

When b* # h* ¢, and b* # 0 the quadratic form z' H(h*)z
can be expressed as follows,

e H(E e =03+ S ) (

i k10

5 )enat an

whg%‘se gl(e tvg()) summations are d(isj(z\i)%t. We have a =
8705 (83=X)(ka— _ 48 3= .

3 wraponp and B = *3 na+‘g(P—1)—)\P' The sign of
the quadratic form depends therefore on the sign of o and
the sign of the eigenvalues of the 2 x 2 matrix introduced

in the expression (17). Indeed, there exists a vector z; such

2
that z! H(h*)z, = a), z], where a = %ﬁ;” <0
2
when A = 9 and @ = 2% > 0 when A\ = 0. In the

same way, there exists a vector g, such that ztH(h*)z, =
a Ekl(wi +z})+28 >k, Tkzi. To determine the sign of the
eigenvalues of the second order quadratic form, it is equiva-
lent to study the sign of the determinant o> — 2. We have,
az—ﬁ2:(§)2 0'3(3_)\)2

3’ (ka+3(P—1)—AP)?
Thus for A = 0, since K, — 3 < 0 we have a® — 8% < 0. For
X =9, we have a® — 82 > 0. The sign of the quadratic form
z'H(h*)z changes when £ = g, or £ = z,. The extrema h*
with more than one non-zero component correspond there-
fore to saddle points of Jc(dc)(i, Pr).

2. Classification of the extrema (h*,p")
For A = 0 the extrema h* # 0 satisfy [|b*]|*> > S—E'{%QT and

lR*I* < ﬁﬁ ITI%— for P > 1. In other words, we have

E{y.”} — 2 > 0 which implies that the solution p. = E{y}
is a minimum. For A = 9 the extrema h* # 0 satisfy||h*||? <
ﬁﬁ and ”h*”2 > ﬁﬁ @; for P > 1. Therefore

we have JE{y’} — 2 < 0 which implies that the solution

P« = E{y} + 1/v — 3IE{2?} is a maximum.
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