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ABSTRACT

This work derives the multichannel Bussgang restora-
tion algorithm for blind image restoration problems. In
its basic outline, the derived Bussgang restoration al-
gorithm is based on iteratively filtering the measure-
ments by means of a bank of FIR filters, and updating
the filter-bank on the base of a nonlinear estimate of
the original image. The filters are updated by solving
a linear system (multichannel normal equations) whose
coefficients’ matrices depend on the cross-correlations
between the measurements and a nonlinear estimate of
the original image, this latter obtained using a Bayesian
criterion. Experimental results pertaining to restoration
of motion blurred text images and out-of-focus star field
images are reported.

1 Introduction

Image restoration, aiming at recovering an original im-
age observed through a single or multiple noisy chan-
nels, has been widely studied in literature because of its
theoretical as well as practical importance [1], [2], [3].

In same situations the blur is assumed known, which
leads to well known deconvolution methods such as
Wiener filtering, recursive Kalman filtering, constrained
iterative deconvolution methods.

However, in many practical situations, the blur is par-
tially known [4] or unknown, because an exact knowl-
edge about the mechanism of the degradation process
is not available. Therefore, the blurring process needs
to be characterized on the available blurred data. In
such a scenario, blind image restoration techniques are
employed. They aim at the retrieval of an original im-
age, observed through a non-ideal channel, whose char-
acteristics are not known, or are partially known, in the
restoration phase.

In some applications (e.g. electron microscopy, re-
mote sensing, tele-surveillance) the observation system
yields multiple observation of the original image and, in
line of principle, the restoration algorithm can exploit
the redundancy of the observations in order to achieve
performance unobtainable from a single measure [5], [6].

In this paper, the multichannel Bussgang restoration
algorithm is derived, thus extending the single-channel
Bussgang restoration algorithm [7, 8, 9]. The algorithm
is iterative and the generic iteration can be summarized
as follows. The restored image is obtained at the output
of a bank of FIR filters that act on the multiple obser-
vations. Then, from this “linear” estimate, a different
“nonlinear” estimate is obtained according to a Bayesian
Minimum Mean Square Error (MMSE) criterion that
exploits a suitable stochastic model of the image to be
restored. Finally, the nonlinear estimate is used to form
the cross-correlations needed in the r.h.s. of the mul-
tichannel normal equations (Wiener) that solve for the
updated impulse reponses of the filter-bank. The al-
gorithm is started using a suitable initial guess of the
deconvolution filter-bank. Often, the neutral choiche of
2-D unit sample filters is sufficient for the convergence.

We remark the key role played by the nonlinear esti-
mation, which drives the algorithm toward an equilib-
rium point where the deconvolved image is congruent
with the assumed stochastic model. In other words, the
“quality” of the deconvolved image is determined almost
exclusively by the nonlinear estimation.

The deconvolution algorithm is here applied to two
restoration experiments, concerning with the recovery
of motion blurred text images and of out-of-focus star
field (bright and dark spots) images.

2 Observation model

The single-input multiple-output (SIMO) observation
model of images is depicted in Fig.1 and analytically
characterized by:

yi[m,n] = (x ∗ hi)[m,n] + vi[m,n], (1)

for i = 0, · · · ,M − 1. The additive terms vi[m,n] rep-
resent realizations of mutually uncorrelated zero mean
white Gaussian processes.

The restored image x̂[m,n] is obtained from the ob-
servations yi[m,n] by means of a bank of M linear FIR
restoration filters fi[m,n], i = 0, · · · ,M−1, whose sup-
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Figure 1: Blurred image generation model and restora-
tion stage.

port is (2P + 1× 2P + 1), namely:

x̂[m,n] =
M−13
i=0

P3
t,u=−P

fi[t, u] yi[m− t, n− u] (2)

3 Multichannel Wiener filtering

In this Section the multichannel Wiener filtering is de-
scribed. The results obtained hereafter will be used
in the next Section. Specifically, with reference to the
observation model depicted in Fig.1, the Wiener filter-
bank fi[m,n], i = 0, · · · ,M − 1, minimizes the MSE of
the linear estimate given by (2), given by:

MSE (f1, · · · , fM−1)def= E
\|x̂[m,n]− x[m,n]|2� (3)

Applying the orthogonality principle to the minimiza-
tion of the above cost function yields the following linear
set of (M × 2P + 1× 2P + 1) normal equations for the
determination of the (M × 2P +1× 2P +1) coefficients
of the multichannel Wiener filter

M−13
j=0

P3
t,u=−P

Ryjyi [r − t, s− u]fj [t, u] = Rxyi [r, s] (4)

being

Ryj ,yi [r, s]
def
= E{yj[m,n] yi[m− r, n− s]}

Rx,yi [r, s]
def
= E{x[m,n] yi[m− r, n− s]}

with i = 0, · · · ,M − 1, and r, s = −P, · · · , P .
Deconvolution by Wiener filtering requires, in prin-

ciple, the knowledge of the cross-correlations between
the original image and the measurements; it provides
the optimal linear estimate of the original image in the
MMSE sense. If such cross-correlation is not available,
one can resort to a suitable estimate, as in the mul-
tichannel Bussgang blind deconvolution algorithm de-
scribed below.

4 Multichannel Bussgang Algorithm

The Bussgang approach of HOS based methods [7, 8,
9] is here extended to the multichannel blind image

restoration problem. We derive the multichannel Buss-
gang blind deconvolution algorithm on the base of the
following facts:

• The cross-correlations in the r.h.s. of (4) can be ex-
pressed in temrs of the conditional a posteriori mean

x̃[m,n]
def
= E{x[m,n]/y0, · · · , yM−1} as follows:

Rxyi [r, s] = E{x̃[m,n]yi[m− r, n− s]} = Rx̃yi [r, s]
The conditional a posteriori mean constitutes also the
MMSE estimate of x[m,n] given the observed samples
of the sequences y0, · · · , yM−1.

• Hence, the multichannel Wiener filter-bank fi[m,n]
is obtained by solving the normal equations (4) after
having substituted Rx̃yi [r, s] = Rxyi [r, s] in the r.h.s.
of (4), for i = 0, · · · ,M − 1.

• The deconvolved image x̂[m,n] at the output of the
Wiener filter-bank is a sufficient statistic for the es-
timation of x[m,n] given y0, · · · , yM−1; therefore we
have also x̃[m,n] = E{x[m,n]/x̂}

Inspired by this analysis we devise an iterative blind de-
convolution algorithm whose k-th iteration is here sum-
marized:

1. the linear estimate x̂(k)[m,n] is computed from the
observed sequences y0, · · · , yM−1 by means of a pre-
vious estimate of the Wiener filter-bank f

(k−1)
i , i.e.

x̂[m,n] =
M−13
i=0

(f
(k−1)
i ∗ yi)[m,n]

Since the original image can be retrieved except for an
amplitude scale factor, at each iteration the Wiener
filter-bank is normalized to yield an unitary energy
output.

2. according to a suitable stochastic model of the image
x[m,n], the nonlinear MMSE estimate x̃(k)[m,n] is
computed as

x̃(k)[m,n] = η(x̂(k))
def
= E{x[m,n]/x̂(k)}

In general, the nonlinear estimator η(·) exhibits non-
zero spatial memory.

3. a new estimate of the Wiener filter-bank f
(k)
i is com-

puted by solving the normal equations (4) where
Ryjyi [r, s] and Rx̃yi [r, s] are substituted by their sam-

ple estimates �Ryjyi [r, s] and �Rx̃(k)yi [r, s], respectively.
Note that in this step only the cross-correlations�Rx̃(k)yi [r, s] are computed, while �Ryjyi [r, s] are com-
puted only once before starting the iterations.

4. convergence is tested by a suitable criterion.

The algorithm is initialized by a suitable initial guess

f
(0)
i [m,n], i = 0, · · · ,M − 1, of the Wiener filter-bank.
As outlined in [7, 8], the iterative algorithm reaches

an equilibrium point, namely f
(k−1)
i [m,n] = f

(k)
i [m,n],
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Figure 2: General form of the Bussgang deconvolution
algorithm.

when the cross-correlations between the linearly re-
stored image x̂(k)[m,n] and the measured images
yi[m,n], i = 0, . . . ,M − 1, reproduce, within an am-
plitude scale factor, the cross-correlations between the
estimate x̃(k)[m,n] and the observations, that is:

Rx̂yi [r, s] = const ·Rx̃yi [r, s]. (5)

Since the equilibrium point is characterized by the in-
variance between cross-correlations (5), also known as
“Bussgang” property of stationary processes under non-
linear transformations, the deconvolution algorithm is
commonly referred to as “Bussgang” deconvolution al-
gorithm [7, 8]. However, it is well known that if the
original image x[m,n] is a realization of a stationary
Gaussian random field, the restoration process becomes
inherently ambiguous, being the Bussgang property sat-
isfied irrespective of the filter-bank fi[m,n].
A discussion on the convergence of the algorithm is

reported in [10] for the case of single channel.
We must remark that the convergence of the algo-

rithm is affected by the nonlinearity η(·), whose analyt-
ical determination can result quite difficult. However,
if the residual error at the k-th iteration w(k)[m,n] =
x̂(k)[m,n] − x[m,n] can be assumed independent of
x[m,n], the nonlinearity η(·) has zero spatial memory
and it depends only on the marginal probability density
function (pdf) px(·) of x[m,n] and on the marginal pdf
pw(k)(·) of the residual error w(k)[m,n]. This assumption
is reasonable when the iterative deconvolution is close
to the convergence, where the residual noise can be ap-
proximated with a zero mean white Gaussian process of
variance σ2

w(k)
.

For instance, in the case of binary text images the
image x[m,n] can be stochastically described as a real-
ization of a white stationary random field with pdf

px(x) = p0δ(x) + (1− p0)δ(x− 1) (6)

The MMSE estimate x̃(k), given x̂(k), turns out to be:

x̃(k) = η(x̂(k)) =
1

1 +
p0

1− p0 exp
X
− x̂

(k) − 1
2

σ2
w(k)

~ (7)

Another interesting case are star field images, i.e. im-
ages characterized by an excitation field made of sparse
bright or dark spots in a gray background. In this case,
we can model the pdf of the image according to the fol-
lowing Gaussian mixture:

px(x) = p0δ(x) + (1− p0)N (x, 0,σ2x) (8)

whereN (x,mx,σ
2
x) denotes the Gaussian pdf with mean

mx and variance σ
2
x. This case closely resambles the geo-

physical prospecting problem addressed in [7], where the
nonlinear estimate x̃(k) has been calculated as follows:

x̃(k) = η
p
x̂(k)
Q
=

σ2
x̂(k)

σ2
x̂(k)

+ σ2
w(k)

· x̂(k)

g
D
x̂(k)
i (9)

being the function g(·) given by:

g(x) = 1 +
p0

1− p0

�
1 +

σ2
x̂(k)

σ2
w(k)

exp

−
x2

2σ2
x̂(k)

1 +
σ2
x̂(k)

σ2
w(k)


5 Experimental Results and Final Remarks

Experimentations have been performed on synthetically
generated binary text images and star fields. In Fig.3
the original test images before application of the blur-
ring filters are shown.

Figure 3: Left: text image. Right: star field.

The text image is blurred using the following two motion
blur filters:

h0[n,m] =

l
δ[n−m] for 0 ≤ n,m ≤ 5
0 elsewhere

h1[n,m] =

l
δ[n] for 0 ≤ m ≤ 5
0 elsewhere

In Fig.4 the blurred text images are shown along with
the deconvolved and the nonlinear MMSE estimated
ones, for different signal-to-noise ratios (SNR) (both the
channels have the same SNR): first row 10dB, second
row 20dB, and third row 30dB. It is worth pointing out



Figure 4: First and second column: blurred text images.
Third column: deconvolved estimation x̂[m,n]. Fourth
column: nonlinear MMSE estimation x̃[m,n]

that the deconvolution technique here described allows
obtaining clear and readable deconvolved text images.
The iterative deconvolution converges after 30-35 itera-
tions, as illustrated in Fig.5, where the MSE, as defined
in (3), is plotted vs. the iteration number.
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Figure 5: Binary text image deconvolution: MSE vs.
iterations.

In Fig.6 the star field images blurred using four Gaus-
sian shaped filters are shown. The impulse responses of
employed blurring filters take the following form:

hi[n,m] = e
−[(n−ni)2+(m−mi)

2]/2σ2 · cos (θin) cos (φim)
with θi/π = 0.2, 0.7, 0.2, 0.9, φi/π = 0.1, 0.2, 0.9, 0.8,
ni = 0, 1,−1, 0, mi = 0, 1, 0, 1, and σ = 3. At the
output of all the four filters we have SNR=10dB.

Figure 6: Blurred star fields at SNR=10 dB.

The deconvolved images are displayed in Fig.7. We see
that the stars are clearly distinguishable after deconvo-
lution, even those pairs that lie very close each other.

Figure 7: Restored star field image. Left: deconvolved
estimation. Right: nonlinear MMSE estimation.

In this case convergence is attained after 20 iterations,
as illustrated in Fig.8, where also the SNR values of 20,
and 30dB have been reported for completeness.
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Figure 8: Star field image deconvolution: MSE vs. iter-
ations.

References

[1] A.K. Katsaggelos Ed., Digital Image Restoration, New
York: Springer Verlag, 1991.

[2] D. Kundur, D Hatzinakos, “Blind Image Deconvolution”,
IEEE Sig. Proc. Mag., pp.43-64, May 1996.

[3] “Special issue on blind systems identification and estima-
tion,” R. Liu and L. Tong, eds., IEEE Proc., Vol.86, No.10,
October 1998.

[4] N.P. Galatsanos, V.Z. Mesarović, R. Molina, and A.K. Kat-
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