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ABSTRACT

In this paper, we present an unbiased adaptive modelling ap-
proach to feedback cancellation in hearing aids. The ap-
proach is based on a closed loop identification of the feed-
back path as well as the (linear prediction) model of the
near-end input signal. In general, both models are not si-
multaneously identifiable in the closed loop system at hand.
We show that -under certain conditions e.g. if a delay is in-
serted in the forward path- identification of both models is
indeed possible. Simulation results demonstrate that -under
these conditions- the unbiased modelling approach outper-
forms the biased continuous adaptation algorithm.

1 INTRODUCTION

Acoustic feedback, which is caused by leakage from the
loudspeaker to the microphone, limits the maximum ampli-
fication that can be used in a hearing aid without instability.
To increase the maximum gain, a feedback cancellation algo-
rithm is used that estimates the feedback signal and subtracts
it from the microphone signal. Since the acoustic path be-
tween the loudspeaker and the microphone can vary signif-
icantly depending on the acoustical environment, the feed-
back canceller must be adaptive.

Currently available adaptive feedback cancellers can be di-
vided in to two classes: algorithms with a continuous adapta-
tion and algorithms with a noncontinuous adaptation [1],[2].
The latter only adapt the filter when instability is detected or
when the input signal level is low. Due to the reactive, rather
than proactive, adaptation, these systems may be objection-
able. A continuous adaptation scheme continuously adapts
the filter coefficients of the filter F'(z). This is depicted in
Figure 1. Since the input signal z[k] to the microphone is
non-white and due to the forward path G(z), z[k] and the in-
put u[k] to the adaptive filter £'(z) are correlated, generally
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Figure 1: Concept of a (biased) adaptive feedback canceller.

causing a biased estimate £'(z) of the feedback path F(2)
[3]. To reduce the correlation, delays are included in the for-
ward path G(z) or in the cancellation path (i.e. at the input of
the adaptive filter F'(z)). The correlation can also be reduced
by inserting a noise signal r[k] at the input of the loudspeaker
that is uncorrelated with z[k] or by adding nonlinearities in
the forward path G(z) [4].

Suppose that X (z) = H (2)W (z), with W (z) white noise
and H(z) monic, inversely stable and known. In [5], it is
shown that the bias of the adaptive filter can be avoided by
means of a filtered-X algorithm that minimizes the filtered er-
ror H=1(2)(Y (2) — F(2)U(z)). The concept of the filtered-
X algorithm is illustrated in Figure 2. In practice, H~1(2)
is unknown and time varying. In addition, the performance
of the filtered-X algorithm strongly depends on the quality
of the estimate of H—1(z) so that it is desirable to estimate
H~1(z) adaptively. In general though, F(z) and H~'(z)
are not identifiable in closed loop if R(z) = 0, G(z) is lin-
ear and the filter Fy(2) is fixed [5]. In this paper, we show
that -under certain conditions- identification of both H~1(z)
and F'(z) is indeed possible. In Section 2, the identification
method is described. Section 3 derives the conditions under
which the identification scheme has a unique optimal solu-
tion. In Section 4, the theory is verified through simulation.

2 CONCEPT

Consider the two-channel identification scheme depicted in
Figure 3 with adaptive FIR filters A(z) and B(z), with co-
efficient vectors a and b and filter lengths N4 and Np,
respectively. The two-channel adaptive filter minimizes
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Figure 2: Filtered-X algorithm.
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Figure 3: Two-channel identification scheme.
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We would like the filter B(z) to identify the product
—H~Y(2)F(z) and the filter A(z) to identify H~'(z) such
that E(z) equals W (z). To avoid the trivial solution A(z) =
B(z) = 0, the first tap of A(z) is set to 1: A(z) =
1+ z71A(2). In general, z[k] is speech-like and a segment
of z[k] can be modelled by an all-pole model, so we assume

1

= mw(z)J 2

with W (z) a white noise signal (in case of unvoiced sounds)
or an impulse train (in case of voiced sounds). Hence,
H=1(2) =1+ 271P(z) is an FIR filter.

The filter Fy(z) is an initial estimate of F(z) with
1_G(Z)(F}Z)_FO(Z)) assumed to be stable. It may be replaced
during identification of A(z) and B(z) by a previously ob-
tained estimate —A~1(z)B(z). The filter A=1(z) should be
constrained to be stable. If Fy(z) is kept fixed during adap-
tation, the cost function 4 Eiv:—(; ej islinear inb and a. If

Fy(z) is replaced by a previous estimate of —A~1(2)B(z)
during adaptation, u; and y; depend on previous values of
A(z) and B(z). In this case, the optimisation criterion is
nonlinear in b and a.

Assume that the system in Figure 3 is sufficiently linear
and stationary so that we can use the Z-transform theory.
Then, according to Parseval’s theorem,

_ 1 E(z)E(z7")
N X:: ¢ = 27N 7{, PR )

with C the unit circle and E(2) = B(2)U(z) + A(2)Y (2)
the Z-transform of the sequence {ej }r=o,...,n—1. The inputs
U(z) and Y (z) of the two-channel adaptive filter are given
as

U(z) = G()(Y(2) - Fo(2)U(2)) + R(2), (4)
Y(z) = F(2)U(2)+ X (2), ®)

where R(z) is the noise signal injected at the input of the
loudspeaker. Substitution of (5) in (4) results in

R(z) + G(2)X(z)
1—G(2) (F(2) — Fo(2))

The output E(z) of the two-channel adaptive filter thus
equals

U(z) =

(6)

B(z) + A(2)F(2)

EQ) = 1ewre) - ne)
G(2)(B(:) + A()F(2))
*(A(Z“ C)(F () - Folz )))H(z)w(z)'m

Section 3 studies under which conditions minimization of
(3), has the unique solution A(z) = H~Y(z), B(z) =
—H71(2)F(2).

3 UNIQUE SOLUTION/IDENTIFIABILITY

To analyse (7), we distinguish between two cases: R(z) # 0
(noise injection) and R(z) = 0 (no noise injection).

3.1 Casel: R(z) # 0 (noiseinjection)

If R(z) # 0 and if r[k] and a:[k] are uncorrelated, mini-
mization of § E(2)E(z~*)4, results in minimization of
fC[El(Z)El(Z_l) + EQ( )EQ( )] > , Where El( ) and
E5(z) equal

B(z) + A(2)F(z)
=GR - R ) ®)

(4t CEBE) + ADFE)
me)= (46 + GG S Ay ) X0

Assume Np and N4 are adequately chosen i.e. sufficiently
large. Minimizing ¢ E1(z El( *1)‘12—Z results in B(z) =
—A(2)F(z) leading to §, E(2)E1(z)% = 0. Plugging
this into (9), we obtain Ex(z) = A(z)X(z). Minimization of
$c B2(2)B2(271) % with A(z) = 1+ 2~ 1A(2) corresponds
to linear prediction of X (z). Since X (z) = H(2)W (z), this
results in A(z) = H'(z). Hence the optimal solution is
found to be unique and to equal the desired solution.

E1 (Z) =




3.2 Case2: R(z) =0 (nonoiseinjection)
If R(z) = 0, minimization of ¢, E(z)E(z—l)% reduces to
minimization of §_ E»(2)Ex (2 1) %,

3.2.1 Delayd intheforward path
Suppose G(z) = z7¢G(z) with d > 1 and G(z), F(2),
Fy(z) are causal. For causal FIR filters A(z) and B(z),

_ _GR)(B() + AR)F(2))
1— 279G (2)(F(2) — Fy(z))

I(z) (10)
is a causal IR filter, which may be specified as I'(z) =
Y + 2~y + .... Since the first tap of A(z) + 2z~9T'(2)
in (9) equals the first tap ap = 1 of A(z), minimiza-
tion of ¢ E2(2)E2(21)% corresponds to linear predic-
tion of X (z), such that the optimal solution corresponds to
[A(z) + 2797 (2)] X (2) = H ! (2) X (2) or
_a_GR)(B(2) + AR)F(2))

A e -Re)

In general, A(z) and B(z) are not uniquely determined by
(11). Equating powers of z in (11) we see that -if N4 and
Ng are large enough such that A(z) and B(z) can model

H~Y(z) and —H~1(2)F(2) respectively i.e.

and [N > Ng—1 + Np | with Ng—+ = Np + 1, and if
d > N4 |- the solution is unique and equals

A(z) =H '(2); B(z) = —H '(2)F(2). (12

If d = N4 but N4 is smaller than the length of H—1(z)
the solution of (11) is unique but biased because H ~!(z) is
under modelled.

Note that the biased, continuous adaptation algorithm
depicted in Figure 1 can be interpreted as a special case
of the two-channel adaptive filtering scheme in which
A(z) = 1. For significantly large d, the correla-
tion between X (z) and 2~%¢X(z) will be negligible such
that the minimization of ¢ E»(2)E2(271)% decouples
in to minimization of §, A(2)X (2)A(z"1)X (271 L& +
$cT(2) X ()T (271X (271) 4. Since A(z) = 1, only the
second term can be minimized and hence, B(z) converges to

Also note that in (11) the error B(z) + A(2)F(z)

is weighted by l_z_dg(z?(%)(z)_Fo(z)). The larger
‘ G(z)

=960 (F ) =Fo(2) ‘ , the smaller the bias of the feedback

path will be in a biased approach.

3.2.2 Delay d- inthe cancellation path

Suppose a delay ds is added to the cancellation path i.e.
B(z) = z=%B(2) with B(z) causal and suppose F(z) =
2% F(z) with F(z) causal. Ifdy +d > Ng-1 withd > 1
and if Ny > Ngy-1 and Ng > Ng-1 + N, the solution of
(112) is unique and equals the desired solution. If the first ds
taps of the feedback path F'(z) differ from zero, the solution
will be biased.

3.2.3 Timevarying Fy(z), G(2) or nonlinear G(z)

In general, (11) implies that there are several solutions for
A(z) and B(z). If G(z) or Fy(z) are time varying, the
positions of the spurious solutions will change with time
such that it is likely that -with sufficient averaging- the
algorithm will converge to the desired solution. Hence, if
Fy(z) is at each time instant replaced by the most recent
estimate of —A~1(z)B(z), the adaptive algorithm may
converge to the desired solution, even without adding a delay
in the forward path.

A nonlinear G(z) reduces the correlation between X(z)

G(z) . :
and  T=aar(rE—my X (?) such that it decou

ples the minimization of chz(z)Ez(z—l)df into
minimization  of  §, A(2)X(2)A(z"N)X (7))L +
$cT()X(2)L(z21)X(271)% and thus also makes
A(z), B(z) identifiable.

4 SIMULATION RESULTS

Section 3 shows that under certain conditions the filters A(z)
and B(z) are identifiable even if no additional noise R(z) is
injected in the system. Inserting e.g. a large enough delay
d in the forward path G(z) renders the system identifiable.
Inserting a delay d» in the cancellation path only results in an
unbiased solution if the first d» taps of F'(z) equal 0. Making
G(z) nonlinear or inserting a noise signal R(z) also helps
to make the system identifiable but may degrade the sound
quality of the microphone signal. Hence, inserting a delay
d in the forward path is the preferred option. This Section
illustrates the performance of the two-channel identification
method through simulation for this scenario. The two cases,
adaptive and fixed Fy(z), are considered. For comparison,
the results obtained with the continous adaptation algorithm
of Figure 1 are given too.

4.1 Recursive Algorithm

In the simulations, Recursive Least Squares (RLS) is used
to update the two-channel adaptive filter. If however at each
time instant the filter Fy(z) is replaced by the most recent es-
timate of —A~!(z)B(z) during adaptation, uy, y; depend
on previous estimates of b and a such that the optimisa-
tion problem becomes nonlinear. This dependency is effec-
tively ignored in our implementation, which corresponds to
neglecting the second term in the gradient of the cost func-

tion

de duy  dyy b

b — Uk b, b
[%]“([n% buy —Bnga] ¢ @

This algorithm resembles a pseudo-linear regression algo-
rithm (cfr. the pseudo-linear regression algorithm used in
output error IIR adaptive filters [6]).

4.2 Simulation Results

In the simulations, the acoustic feedback path model F(z)
is a 49th order FIR filter. The hearing aid input signal z[k]
is a speech-shaped noise signal created by passing Gaussian
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Figure 4: Frequency domain misalignment ¢(F, F') of the
feedback path estimate —A~!(z)B(z) ford = 11.
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Figure 5: Frequency domain misalignment ¢(H, H) of the
speech model estimate A(z) ford = 11.

noise through a 10th order all-pole filter H(z). The forward
path model equals z~?G, with G = 5. Figure 4 shows the
misalignment { (F, F) (in dB) of the estimated feedback path
F as a function of the number of samples for the continu-
ous adaptation algorithm and for the two-channel adaptive
filter for d = Ng-1 = 11. The filter lengths of the adap-
tive filters are set to the true model ordersi.e. Ny = Ng-1,
Np = Ng-1 + Ny in the two-channel adaptive filter tech-
nique and Nz = Np in the biased continuous adaptation

algorithm. The misalignment ¢ (F, F') is computed in the fre-
quency domain as

SN P
((FF) =

2 7

N;—1 T ~=
P ‘F(e V1)

where Ny = 64 equals the number of frequency points used.
Here F'(z) is the obtained estimate of the feedback path.
In the two-channel approach F'(z) equals —A~1(z)B(z).
For comparison, the misaligment of the feedback path esti-
mate obtained with Filtered-X RLS using the correct speech

model, which we consider in some sense an optimal solu-
tion, is depicted too. The solid lines correspond to a fixed
filter Fy with Fy(z) = 0, the dotted lines are the ones ob-
tained for a continuously adapted Fy(2) = —A~1(2)B(z).
In this simulation, these two lines nearly coincide. Other
simulations have shown that for Fy(2) = —A~1(2)B(z) the
convergence of the misalignment of the feedback path es-
timate strongly depends on the initialisation of the covari-
ance matrix, but always outperforms the biased continuous
adaptation algorithm. The two-channel adaptive filter per-
forms nearly as well as the optimal filtered-X algorithm and
clearly outperforms the biased continuous adaptation algo-
rithm. Figure5 shows the misalignment of the speech model
estimate obtained with the two-channel adaptive algorithm.
The misalignment of the speech model drops significantly.
This indicates that also the speech model estimate converges
to the true model.

5 CONCLUSIONS

In this paper, we have presented an unbiased adaptive mod-
elling approach to feedback cancellation in hearing aids. The
approach performs a closed loop identification of the feed-
back path and the (linear prediction) model of the near-end
input signal. In general, both models are not simultaneously
identifiable in closed loop. We show that -under certain con-
ditions e.g. if a delay is inserted in the forward path- identifi-
cation of both models is possible. Simulation results demon-
strate that -under these conditions- the unbiased technique
outperforms the biased continuous adaptation algorithm.
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