
 

3-D FAST ALGORITHM FOR THE 3-D  
NEW MERSENNE NUMBER TRANSFORM 

 
O. Alshibami and S. Boussakta 

Institute of Integrated Information Systems 
School of Electronic and Electrical Engineering 

University of Leeds, Leeds, LS2 9JT, UK 
E-mail: s.boussakta@ee.leeds.ac.uk 

 
ABSTRACT 

The New Mersenne Number Transform (NMNT) has 
been introduced in order to solve the problem of short 
transform lengths associated with other Mersenne 
number transforms (MNTs). In this paper, the three-
dimensional NMNT and the 3-D radix-2×2×2 fast 
algorithm are introduced and discussed. The 
mathematical derivation of the new algorithm is 
presented and the number of arithmetic operations is 
calculated and compared to the row-column approach. 
Using single and multiple butterflies implementations, 
the radix-2×2×2 is found to reduce the number of 
arithmetic operations significantly. 
 

1. INTRODUCTION 
The calculation of the three-dimensional (3-D) and 
multidimensional (m-D) convolution and correlation 
functions involves a large number of arithmetic 
operations. Therefore, fast 3-D and m-D transforms are 
used for their calculations [1]. Among the m-D 
transforms, the Fermat and Mersenne numbers 
transforms are considered to be among the best 
candidates for error-free calculation of m-D convolution 
and correlation functions [2-5]. However, the main 
problem associated with their use is the short transform 
sizes [6]. Thus, the new Mersenne number transform 
(NMNT), was introduced to solve such problem  [7].  

The NMNT is defined modulo Mersenne number 
where arithmetic operations are simple (equivalent to 1's 
complement arithmetic) and can be used for fast 
calculation of convolutions, cross-, auto-correlations and 
related applications without the effects of rounding and/ 
or truncation errors. It has a large transform size power 
of two [4,7]. 

Unlike one and two-dimensional signal processing 
algorithms, most algorithms in three and higher 
dimensions are still undeveloped. Hence m-D 
transforms are usually calculated using algorithms 
developed for the 1-D case in row-column approach. 
Although this method has the advantage of using 
algorithms developed for the 1-D case, it is not efficient 
and when the transform is not separable as the case for 
the 3-D NMNT, extra arrays and arithmetic operations 
are needed. 

Therefore, the 3-D radix-2×2×2 algorithm was 
introduced for the 3-D NMNT [8] and its arithmetic 

complexity was analysed for a single butterfly 
implementation. In this paper, a simpler derivation of this 
algorithm is introduced and the arithmetic complexity is 
analysed using multiple butterflies to remove trivial 
operations. The radix-2×2×2 algorithm has simple 
butterfly structure and can be implemented in-place. 
Compared to the 3-D row-column approach based on 
multiple butterflies also, the new algorithm is found to 
reduce the total number of arithmetic operations 
significantly. 

 

2. THE THREE-DIMENSIONAL NMNT 

The 3-D NMNT of ( )1 2 3, ,x n n n  of dimensions 

1 2 3N N N× ×  is defined as [7]: 
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where • Mp means modulo the pth Mersenne number 
( 2 1pMp = − , with p an odd prime). To get the 
maximum transform sizes, Mp  should be chosen to be 
prime of the form 2p-1 where the maximum transform 
size is max max max 2 2 2p p pN N N× × = × × . 1β  and 2β  in 
Eqs. (3) and (4), respectively, are for the transform size 

1 1 12 2 2p p p+ + +× × . For transform size 1 1 12 2 2p p p

d d d
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where d in integer power of two, 1β  and 2β  are given 
by: 
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where α1 and α2 are calculated by: 
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The inverse transform is the same as the forward 
except for a scale factor (N1N2N3)-1 which is equal to 1 
for maximum transform size. For other transform sizes, 
it can be split between the forward and the inverse 
transforms to make them exactly the same. 

 

3. RADIX-2×2×2 ALGORITHM 
The m-D NMNT is usually computed using the row-
column approach by adding certain points of the m-D 
separable transform. The m-D separable transform is 
computed using fast 1-D NMNT algorithms applied 
over each dimension successively. The m-D NMNT is 
then computed from the separable transform at the 
expense of extra additions and shifts (multiplication by 
2p-1). 

In this paper, a simple derivation of the 
previously presented 3-D radix-2×2×2 algorithm [8] is 
introduced for fast calculation of the 3-D NMNT.  

3.1 Mathematical Development 
The 3-D new Mersenne number transform defined in 
Eq. (1) has transform sizes equal to powers of 2×2×2 
and hence can be computed using the radix-2×2×2 
algorithm. In this algorithm, the three-dimensional new 
Mersenne number transform summations are 
decomposed into eight separate summations over the 
even and odd indices of x(n1,n2,n3) where the N×N×N-
point 3-D NMNT computation is divided into eight 

2 2 2
N N N× ×  3-D NMNTs. In the next stage of the 

algorithm, each 
2 2 2
N N N× × -point 3-D NMNT is further 

divided into eight 
4 4 4
N N N× × -point 3-D NMNTs, and the 

process continues until we obtain 2×2×2 transforms [8]. 
Therefore, X(k1,k2,k3) in Eq. (1) is decomposed as: 
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For abc = 000, X000(k1,k2,k3) can be written as: 
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D000(k1,k2,k3) is a 3-D NMNT with size 
2 2 2
N N N× × . 

Similarly, X001(k1,k2,k3) can be written as: 

( ) ( )

( )( )
1 2 3

/ 2 1 / 2 1 / 2 1

001 1 2 3 1 2 3
0 0 0

1 1 2 2 3 3

, , 2 , 2 , 2 1

                                          2 , 2 , 2 1

N N N

n n n

Mp

X k k k x n n n

n k n k n kβ

− − −

= = =

= +

× +

 (12) 

Using the identity: 
( ) ( ) ( ) ( ) ( )1 2m n m n m nβ β β β β+ = + −               (13) 

X001(k1,k2,k3) can be written as: 
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Again D001(k1,k2,k3) and D001(N/2-k1,N/2-k2,N/2-k3) are   
3-D NMNTs with size 

2 2 2
N N N× × . Following the same 

development, X010(k1,k2,k3), X011(k1,k2,k3), X100(k1,k2,k3), 
X101(k1,k2,k3), X110(k1,k2,k3), and X111(k1,k2,k3) can be 
developed as:  
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Replacing Eqs. (10) and (14)-(20) into (8), leads to the 
general formula of the radix-2×2×2 algorithm for the 3-D 
NMNT: 
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Combining eight points together gives the 3-D radix-
2×2×2 algorithm as: 

( )
( )
( )

( )
( )

( )
( )

( )

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

, , 1 1 1 1 1 1 1 1
, , N/2 1 1 1 1 1 1 1 1
, N/2, 1 1 1 1 1 1 1 1

, N/2, N/2 1 1 1 1 1 1 1 1
N/2, , 1 1 1 1

N/2, , N/2
N/2, N/2,

N/2, N/2, N/2

X k k k
X k k k
X k k k

X k k k
X k k k

X k k k
X k k k

X k k k

�
�
� + − − − −
�

+ − − − −�
� + + − − − −
� =
� + −
� + +�
� + +
�

+ + +���

( )
( )
( )
( )
( )
( )
( )
( )

000 1 2 3

001 1 2 3

010 1 2 3

011 1 2 3

100 1 2 3

101 1 2 3

110 1 2 3

111 1 2 3

, ,
, ,
, ,
, ,

 
, ,1 1 1 1
, ,1 1 1 1 1 1 1 1
, ,1 1 1 1 1 1 1 1
, ,1 1 1 1 1 1 1 1

X k k k
X k k k
X k k k
X k k k
X k k k
X k k k
X k k k
X k k k

� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �− − −� �
� �� �− − − − � �� �
� �� �− − − −
� �� �

− − − − � �� �� � � �� � Mp

(22) 

3.2. Arithmetic Complexity 
The relation for the radix-2×2×2 in Eq. (22) calculates 
eight points, which can be represented by single 
butterfly. For in-place calculation, two butterflies are 
needed to be combined as shown in Figure 1. The in-



 

place butterfly calculates sixteen points and involves 28 
real multiplications and 62 real additions. The 3-D 
transform needs log2N stages. Therefore, the calculation 
of the whole transform using one butterfly requires 

37
24 logN N��  integer multiplications and 

331
28 logN N��  integer additions. 

The above calculation includes a large number 
of trivial multiplications and additions, which can be 
eliminated using multiple butterflies. If multiple 
butterflies are used, the total number of arithmetic 
operations will be reduced to: 

3 3 27
24 log 7 14N N N N� − +�  integer multiplications, 

3 3 231 721
28 8 2logN N N N� − +�  integer additions, and 

3 27
4 7N N� �−�  shifts. 

On the other hand, if the 3-D NMNT is 
calculated using the row-column approach, it will 
involve 3

23 logN N��  integer multiplications and 
3 39

22 log 3N N N� +�  integer additions for a single 

butterfly implementation and 3 3 2
23 log 12 24N N N N� − +�  

integer multiplications, ( ) ( )3 3 29 3
22 2log 6N N N N� − +�  

integer additions, and 3 25
2 6N N� −�  shifts using 

multiple butterflies to remove trivial arithmetic 
operations 

Figures 2, 3 and 4 show a comparison between the 
new algorithm and the row-column approach based on 
multiple butterflies implementations. It is obvious that 
the radix-2×2×2 algorithm offers a substantial saving in 
both total number of multiplications and additions. 
 

4. CONCLUSION 
In this paper, a simple derivation of the radix-2×2×2 
algorithm has been introduced for fast calculation of the 
3-D MNT. The number of arithmetic operations of the 
developed algorithm has been calculated and compared 
to the familiar row-column approach. It has been found 
that, the new algorithm offers substantial savings over 
the row-column approach in terms of multiplications, 
additions and shifts.  
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Figure 2. Comparison between the row-column approach and 

the radix-2×2×2 using multiple butterflies                       
(number of multiplications/point).  
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Figure 3. Comparison between the row-column approach and 
radix-2×2×2 algorithm using multiple butterflies         (number 

of additions/point). 
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Figure 4. Comparison between the row-column approach and 
the radix-2×2×2 algorithm using multiple butterflies  

(number of shifts/point). 
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Figure 1. The in-place butterfly for the 3-D NMNT radix-2×2×2 algorithm. 
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