
Implementation of Median-LMS Adaptive Filters Using Power-of-Two
Multiplication in the Adaptation Arithmetic

Dr Malcolm D Macleod

Department of Engineering, University of Cambridge, Trumpington Street, CAMBRIDGE, UK, CB2 1PZ
email mdm@eng.cam.ac.uk

ABSTRACT
There are many existing methods for reducing the VLSI
implementation cost of the adaptation arithmetic in
stochastic gradient adaptive filters. Some of them cause
significant performance impairments (such as slower
convergence or increased misadjustment noise). However
the replacement of multiplications by Power-of-Two
Quantisers (PTQ), together with shifters, has been shown
to reduce cost with very little performance impairment.
This paper reviews an older method, Power-of-Two
Multiplication (PTM), which is equivalent to exponent-
only floating-point multiplication. We show that although
it has little or no advantage over the PTQ approach for the
LMS, NLMS, and GAL algorithms, the PTM method has
significant advantages for implementing the median-LMS
adaptive filter algorithm.

1. INTRODUCTION

Consider the well known LMS algorithm [1], with
input x(k), output y(k), and desired (reference) signal d(k):

 () () ()Ty k k k= w x (1)

 () () ()e k d k y k= − (2)

 () () () ()1k k e k kµ+ = +w w x (3)
where x(k) = [x(k) x(k-1) ... x(k-M+1)]T; M is the filter
length; w(k) = [w(0) w(1) ... w(M+1)]T is the filter
coefficient vector; and µ is the step size. In the NLMS
algorithm [1,6], (3) is replaced by

() () () () ()21

|| ||
k k e k k

k a
µ+ = +

+
w w x

x
�

 (4)
in which the step size is normalised by the denominator
term, a stochastic estimate of the input signal power (the
addition of a prevents division by zero when the input
signal is zero). There are also several Variable Stepsize
(VS-)LMS algorithms, which may be viewed as
approximations of NLMS.

In all these algorithms, the term e(k)x(k) is a
stochastic approximation of the gradient vector, and its
computation requires M multiplications. It is well known
that adaptation can still take place if this calculation is
approximated [1], and there are many ways in which it can
be simplified. In the Signed Error (SE) algorithm, e(k) is
replaced by sign(e(k)); in the Signed Regressor (SR)
algorithm, x(k) is replaced by sign(x(k)); and in the Sign-
Sign (SS) algorithm, both e(k) and x(k) are replaced by
their signs. The SS algorithm gives great savings, but
seriously impairs convergence; the SE algorithm (always as
good as or better than the SR) has a smaller, but significant,
effect on convergence.

Another approach is to code e(k) using a Power-of-
Two Quantiser (PTQ) [2-5]. The B-bit PTQ described in
[2,5] is defined by

{ sign(u) | u | ≥ 1 (5)
q(u) = { 2└log2(| u |)┘ sign(u), 12 | | 1B u− + ≤ < (6)

 { 0, 1| | 2 Bu − +< (7a)
where └x┘ is the integer ≤ x. q(u) is either 0 or it has a

single “1” in one of B-1 positions. The deadband created by
equation (7a) may lead to “stalling” (cessation of adaptation
for small error values). In an alternative PTQ described in
[8] the third line is therefore changed to

 { 12 B− + sign(u), 1| | 2 Bu − +< (7b)
which avoids the deadband created by (7a), at the expense of
an increase in misadjustment noise.

In [3] the PTQ quantiser is applied to the LMS
algorithm to replace each multiplication e(k)x(k-i) by
sign(x(k-i)) × q(e(k)); it is an approximation of the SR
algorithm, and requires addition of ± q(e(k)) to each
coefficient, when computing (3). In [4,5] e(k)x(k-i) is
replaced by x(k-i) × q(e(k)), requiring addition of a shifted
version of the value ± x(k-i) to coefficient w(i). This second
approach has also been applied to the VS-LMS algorithm
[5], the Gradient Adaptive Lattice (GAL) algorithm [4], and
the NLMS algorithm [7].

In (4) the term ||x(k)||2 is the sum of squares of input
samples. Cheng and Evans [7] describe circuits for
approximate squaring, the simplest of which requires no
hardware at all - it simply maps the bits of the input value to
different locations in the output word. This approach is
compatible with PTQ in adaptive filter implementation [7].

In the present paper, we re-consider an earlier
approach to the simplification of the adaptation arithmetic in
which both inputs to a multiplication are coded using PTQ
[6]. The multiplication is then replaced by addition of the
PTQ code values, followed by “decoding” of the result. This
approach, which we call Power-of-Two Multiplication
(PTM), may be regarded as floating-point arithmetic with an
exponent but no mantissa, or as a coarse form of logarithmic
arithmetic. In [6] it was used in an NLMS echo canceller.

In section 2 we define PTM, and in section 3 we
explain how it can be used in an (N)LMS adaptive filter. In
section 4 we derive the implementation costs of PTM, and in
section 5 we compare it with the cost of PTQ plus shifters.
We show that for the (N)LMS and GAL algorithms PTM
probably has no advantage over PTQ. However in section 6
we show how PTM may be applied to the median-LMS filter,
and demonstrate that it offers significant cost savings in that
application.

2. POWER-OF-TWO MULTIPLICATION
In practice, the use of PTQ in [4,5] is implemented

by encoding the sign and the magnitude of the error using
an encoder with a transfer function such as the following:

{ 0 | u | ≥ 1 (8)
C(u) = { └log2(| u |)┘, 12 | | 1B u− + ≤ < (9)

 { -B or -B+1, 1| | 2 Bu − +< (10)
S(u) = sign(u)

In [4,5] each x(k-i) is input to a negater controlled by
S(e(k)), and the result is shifted under the control of
C(e(k)). In PTM, multiplication of two variables is appro-
ximated by adding their code values and decoding the
result. Similarly division is replaced by subtraction.

From (9) we see that code value p = C(u) implies
2 p ≤ | u | < 2 p+1,

provided -B < p < 0. Thus if we replace multiplication by
adding together two code values p and q = C(v), then

2 p+q ≤ | uv | < 2 p+q+2. (11)
Hence the most appropriate power of two to output as the
decoded value of p+q is 2 p+q+1, the harmonic mean of the
two bounds in (11). By the same argument, if we replace
division by subtraction of code values, the most
appropriate power of two to output as the decoded value of
p-q is 2 p-q. If a combined multiplication and division are
replaced by addition of codes p+q and then subtraction of
a third code r, then we can show that, on average, 2 p+q-r is
equal to the correct result multiplied by 0.72. It is
therefore best, by a small margin, to decode the code value
as 2 p+q-r+1.

The optimum strategy is therefore:
•= when adding code values, add 1 to the result;
•= decode the magnitude of code value s as D(s) = 2 s.

As with all finite-precision arithmetic systems, it is
necessary to handle overflow. That is considered further
in section 4.

The code values defined by (8-10) were chosen for
convenience of explanation. Note that the actual code
values may be altered if it makes implementation of the
coder C(u) and decoder D(s) easier. Our implementation
adds an offset of +B to C(u) as defined in (8-10), and a
corresponding change is made to the decoder (including a
binary shift to give correct overall scaling).

3. APPLICATION OF PTM TO (N)LMS

To apply PTM to the LMS algorithm (3), we could:
•= encode e(k) : E = C(e(k)); S = sign(e(k));
•= encode data values: Xi = C(x(k-i)); Si = sign(x(k-i));
•= add code values, decode, and update each coefficient:

wi(k+1) = wi(k) + S × Si × D(E + 1 + m + Xi),
where µ = 2m. Figure 1 shows the implementation. Since
the hardware cost of a coder having J-bit output is greater
than the hardware cost of a J-bit parallel latch (see section
4) it is best to use a single encoder CX of the input data
[X0 = C(x(k)); S0 = sign(x(k))] and then feed its output into
a shift register from which [Xi ; Si] can be read out, as
shown in Fig.1.

In Fig. 1, blank rectangles are stores, the input data
wordlength is N bits, the code values (including sign) are J
bits, and only the adaptation arithmetic for the first tap is
shown; the other taps are identical.

To apply PTM to NLMS (4), we would instead:
•= compute g(k) = ||x(k)||2 using the approximate squarer

described by Cheng and Evans [7];
•= encode g(k) + a : G = C(g(k) + a);
•= update each coefficient as follows:

wi(k+1) = wi(k) + S × Si × D(E - G + 1 + m + Xi),
where µ� = 2m. Subtraction of G replaces division.

c

 CX

+

 y(k)

 d(k)

 N bits

 J bits

 e(k) CE

 m+1 D0

 w0

a
b

α

 x(k)

d

Figure 1 - LMS adaptive filter using PTM

4. LOGIC IMPLEMENTATION OF PTM

The encoder C(u) (8-10) may be implemented by
first negating the input u if it is negative, and then generating
the index of the highest power of 2 in the resulting binary
number. A further small approximation may be used to
reduce implementation cost: instead of negation (2’s comple-
ment) we implement inversion (1’s complement). Assuming
that the input is an N-bit 2’s complement value, the (N-1)-bit
output u can be obtained using N-1 XOR gates, all with the
MSB as one input. Assuming that transmission-gates [9] are
used, this requires 2+6(N-1) transistors (including a saving
because the MSB is a common input to all the XORs). The
remainder of the encoder can be implemented with a NOR-
NOT ladder to produce a “thermometer code” (in which all
bits from the LSB up to the highest “1” in u are “1”) which
uses 6N-10 transistors, followed by a NAND network, which
requires 28 transistors for 8-bit input, 3-bit output, or 46
transistors for 12-bit input, 4-bit output, or 72 transistors for
16-bit input, 4-bit output. Hence the overall cost for an
encoder C is 110 transistors for 8-bit input, 176 for 12 bits, or
250 for 16 bits (and more efficient designs may exist).

An N-bit parallel latch may be implemented using
18N transistors, and an N-bit full-adder (with no carry into
the LSB stage) using 34N-20 transistors.

The decoder D starts with a 3 (or 4)-line to N-line
decoder, which can be implemented using 50 transistors for
8-bit output, rising to 116 transistors for 16-bit output. To
handle overflow, the decoder can easily be modified to take
as an additional input the MSB carry-out of the adder a, and
if that carry-out (overflow bit) is 1, to output a “1” in its most
significant output bit.

This could be followed by an inverter (again as an
approximation to a negater) at a cost of 2+6N transistors,
feeding adder b in Fig. 1. However, it is possible to exploit
the restricted form of the decoder output to reduce implem-
entation cost. The combined circuit either adds or subtracts
a “1” at a single bit position, at a cost of <28N transistors.
One of the N bits of this circuit is shown in Fig. 2.

 wbi

 ci

 CO

 CI S0

 a

 a

Fig. 2. One bit of the “single-1” adder/subtracter

In Fig. 2, S0 is the negation control (= S × Si); two
transistors are saved in each of the XORs marked a because
they share a common input S0 (common for all i). wbi is the
ith bit of the coefficient, and ci is the ith bit of the coder
output (only one at most of these bits is “1”). CI and CO
are the carry-in and carry-out (both negative logic).

5. COMPARISON BETWEEN PTM AND PTQ

In the PTQ approach of [4,5] the coder CX and
latches c in Fig. 1 are not required, and instead of the adder
a and decoder D0, the data input x(k) is input to a shifter
with control input α in Fig. 1, either preceded or followed
by a negater. A similar negater and shifter are required at
each filter tap. The parallel shifter may be efficiently
implemented with a 0/1-bit-shift stage followed by a 0/2-
bit-shift stage, a 0/4-bit-shift stage, etc. Again assuming
that transmission-gates are used, the basic cost of an N-bit
K-stage shifter is 4NK transistors. In the case of a down-
shifter, the number of transistors is reduced a little if the
output wordlength is truncated. In the case of an up-shifter,
extra transistors are required. In comparing PTQ and PTM,
we will assume a downshifter. The negater can again be
replaced by an inverter (costing 2+6N transistors). (If the
inverter follows the shifter then true negation may be
achieved by inputting a carry into the LSB of adder b.)

The resulting transistor counts (per filter tap) are
shown in Table 1. For the PTM approach, the count covers
the latches c, the adders a, decoders Di, and modified
adder/subtracters b. For PTQ, the count covers the shifter,
inverter and adder b. Three examples are used:

System PTQ PTM

8-bit wordlength, 3-bit+sign coder 381 438
12-bit wordlength, 4-bit+sign coder 620 632
16-bit wordlength, 4-bit+sign coder 844 770

Table 1 - LMS: Transistor cost per filter tap

The cost of the coder CX for the PTM scheme (one

per whole filter) is not included above. (It is 110 - 250
transistors, for input wordlength 8-16 bits.)

From Table 1, we conclude that the implementation
costs of PTM and PTQ in the LMS algorithm are very
similar. The additional implementation cost of the NLMS
algorithm (that is, the computation and coding of g(k) + a,
and subtraction of G from E) is identical for the two appr-
oaches, so the same conclusion applies to NLMS. The
adaptation performance of the two methods is similar, but
PTM is slightly noisier than PTQ. Therefore it is probable
that PTQ is preferable for (N)LMS implementation.

We have carried out a similar comparison for the
GAL algorithm, and although the costs are again similar, the
advantage of the PTQ approach is slightly greater still.

6. APPLICATION TO MEDIAN-LMS

In [11] the median-LMS algorithm is described,
which has greatly improved robustness against impulsive
noise. In this algorithm, a length K median filter is
introduced at the input of each coefficient update adder
(point d in Fig. 1). The median filter outputs the median of
its most recent input and the K-1 preceding inputs. A
hardware implementation [11] can exploit the fact that at
each sample time the previous K values are already ordered
in value. The oldest input must be deleted, and the new input
must be placed in its correct place in the ordered list; this
requires K-1 comparisons. A comparison is equivalent to a
subtraction followed by testing the MSB of the result.

In the PTQ approach, the correction terms output
from the shifter and input to the median filter are of
wordlength equal to the coefficient wordlength N.

In the PTM approach, because C(u) is a monotonic
function of | u |, the median filtering may instead be
performed on the composite value z = S(u) × C(u), before
decoding. The pair (S(u), C(u)) is a J-bit sign+magnitude
representation of z, and a comparator for numbers in this
form comprises a (J-1)-bit XOR (to invert one of the inputs,
if the signs of the two inputs are the same) followed by a
(J-1)-bit adder and a small amount of additional logic.

Hence within the median filter, both the stores and
the comparators cost less, in a ratio approaching (J-1) / N.
Because the output of the median filter is in coded form, the
decoder D0 follows the median filter and the simplified
adder/subtracter shown in Fig. 2 can again be used.

Examples of cost per filter tap are given in Table 2,
assuming the median filter length K = 5. The values in Table
2 are the sum of the cost shown in Table 1 and the cost of K
stores and K comparators; the other median filter circuitry is
common to either approach.

System PTQ PTM

8-bit wordlength, 3-bit+sign coder 2441 1298
12-bit wordlength, 4-bit+sign coder 3760 1782
16-bit wordlength, 4-bit+sign coder 5064 1920

Table 2 - MLMS: Transistor cost per filter tap

A slight further saving may be achieved by converting the
sign+magnitude data at the median filter input to 2s-
complement words of the same wordlength, and
implementing the median filter using conventional
comparators.

6.1 Adaptation Performance
Test data was generated consisting of a binary data

signal (±64) input to an FIR filter with impulse response
[1.0, -0.1, 0.1, 0.0, 0.05, 0.15, -0.05], with noise added
together with “impulsive” “spikes”, as shown in Fig. 3(a).

Fig. 3(b) shows the learning curve (averaged over 10
trials) of a standard LMS adaptive filter of length M = 7, in
system identification mode. For clarity plots 3(b-d) are
scaled so that 0dB implies (rms error = 64).

Fig. 3(c) shows the learning curve of a floating-point
median-LMS adaptive filter of length M = 7, with median
filter length K = 5. Note the reduced vertical axis range.

Fig. 3(d) shows the learning curve of a median-LMS
adaptive filter of length M = 7, with median filter length K
= 5, implemented using the PTQ/PTM method described on
the previous page. Note that although the plot is different
in detail, both the peak error response to input spikes, and
the converged error level, are very similar to those of the
full floating-point median-LMS filter.

8. CONCLUSIONS

The PTQ method using shifters [4-5] is the best way
to implement reduced-implementation-cost (N)LMS and
(N)GAL algorithms with very little adaptation performance
impairment. However, the Power-of-Two Multiplication
method described in this paper results in a significantly
lower-cost implementation of the median-LMS filter.

REFERENCES
1. Clarkson, PM, Optimal and Adaptive Signal Processing,
CRC Press Inc., 1993.
2. Duttweiller, D, “Adaptive Filter Performance with Non-
linearities in the Correlation Multiplier”, IEEE Trans
ASSP, 30, 4, August1982, pp578-586.
3. Xue, P and Liu, B, “Adaptive Equalizer Using Finite-Bit
Power-of-Two Quantizer”, IEEE Trans ASSP, 34, 6, Dec
86, pp1603-1611.
4. Reed, MJ and Liu, B, “Analysis of Simplified Gradient
Adaptive Lattice Algorithms Using Power-Of-Two
Quantization”, IEEE Int Symp Circs Systs, May1990,
pp792-795.
5.Evans, JB, Xue, P, Liu B, “Analysis and Implementation
of variable step size adaptive algorithms”, IEEE Trans SP,
41, Aug 93, pp2517-2535.
6. Duttweiller, D, “A twelve-channel digital echo cancel-
er”, IEEE Trans Commun, COM-26, May 78, pp647-653.
7. Cheng, S and Evans, J, “Implementation Of Signal
Power Estimation Methods”, IEEE Trans Circ Systs-II, 44,
3, Mar 97, pp 240-250.
8. Eweda, E, “Convergence Analysis and Design of an
Ada-ptive Filter with Finite-Bit Power-of-Two Quantized
Error”, IEEE Trans. Circs Systs-II, 39, 2, Feb 92, pp113-
115.
9. Porat, DI, and Barna, A, “Introduction to Digital
Techniques”, Wiley, NewYork, 1979.
10. Haweel, T, and Clarkson, PM, “A Class of Order Stat-
istic LMS Algorithms”, IEEE Trans SP, 40, 1, Jan 92, pp
44-53.

0 50 100 150 200 250 300 350
-200

-100

0

100

200

300

400

500
input signal

Fig. 3(a) Input data to adaptive filter

0 50 100 150 200 250 300
-40

-30

-20

-10

0

10

20

30

40
LMS - note vertical scale

dB

Fig. 3(b) Learning curve of LMS filter

0 50 100 150 200 250 300
-30

-20

-10

0

10

20
median LMS

dB

Fig. 3(c) Learning curve of median-LMS filter

0 50 100 150 200 250 300
-30

-20

-10

0

10

20
median LMS - PTM

dB

Fig. 3(d) Learning curve of PTM-median-LMS filter

