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ABSTRACT 
There are many existing methods for reducing the VLSI 
implementation cost of the adaptation arithmetic in 
stochastic gradient adaptive filters.  Some of them cause 
significant performance impairments (such as slower 
convergence or increased misadjustment noise).  However 
the replacement of multiplications by Power-of-Two 
Quantisers (PTQ), together with shifters, has been shown 
to reduce cost with very little performance impairment.  
This paper reviews an older method, Power-of-Two 
Multiplication (PTM), which is equivalent to exponent-
only floating-point multiplication.  We show that although 
it has little or no advantage over the PTQ approach for the 
LMS, NLMS, and GAL algorithms, the PTM method has 
significant advantages for implementing the median-LMS 
adaptive filter algorithm. 
 
1. INTRODUCTION 

Consider the well known LMS algorithm [1], with 
input x(k), output y(k), and desired (reference) signal d(k): 

 ( ) ( ) ( )Ty k k k= w x    (1) 

 ( ) ( ) ( )e k d k y k= −    (2) 

 ( ) ( ) ( ) ( )1k k e k kµ+ = +w w x   (3) 
where x(k) = [ x(k) x(k-1) ... x(k-M+1) ]T; M is the filter 
length; w(k) = [ w(0) w(1) ... w(M+1) ]T is the filter 
coefficient vector; and µ is the step size.  In the NLMS 
algorithm [1,6], (3) is replaced by 
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in which the step size is normalised by the denominator 
term, a stochastic estimate of the input signal power (the 
addition of a prevents division by zero when the input 
signal is zero).  There are also several Variable Stepsize 
(VS-)LMS algorithms, which may be viewed as 
approximations of NLMS. 

In all these algorithms, the term e(k)x(k) is a 
stochastic approximation of the gradient vector, and its 
computation requires M multiplications.  It is well known 
that adaptation can still take place if this calculation is 
approximated [1], and there are many ways in which it can 
be simplified.  In the Signed Error (SE) algorithm, e(k) is 
replaced by sign(e(k)); in the Signed Regressor (SR) 
algorithm, x(k) is replaced by sign(x(k)); and in the Sign-
Sign (SS) algorithm, both e(k) and x(k) are replaced by 
their signs.  The SS algorithm gives great savings, but 
seriously impairs convergence; the SE algorithm (always as 
good as or better than the SR) has a smaller, but significant, 
effect on convergence. 

Another approach is to code e(k) using a Power-of-
Two Quantiser (PTQ) [2-5]. The B-bit PTQ described in 
[2,5] is defined by  

{ sign(u)    | u | ≥ 1  (5) 
q(u) =  { 2└log2(| u |)┘ sign(u), 12 | | 1B u− + ≤ <  (6) 

  { 0,    1| | 2 Bu − +<  (7a) 
where └x┘ is the integer ≤ x.  q(u) is either 0 or it has a 

single “1” in one of B-1 positions.  The deadband created by 
equation (7a) may lead to “stalling” (cessation of adaptation 
for small error values).  In an alternative PTQ described in 
[8] the third line is therefore changed to 

  { 12 B− + sign(u),   1| | 2 Bu − +<  (7b) 
which avoids the deadband created by (7a), at the expense of 
an increase in misadjustment noise. 

In [3] the PTQ quantiser is applied to the LMS 
algorithm to replace each multiplication e(k)x(k-i) by 
sign(x(k-i)) × q(e(k)); it is an approximation of the SR 
algorithm, and requires addition of ± q(e(k)) to each 
coefficient, when computing (3). In [4,5] e(k)x(k-i) is 
replaced by x(k-i) × q(e(k)), requiring addition of a shifted 
version of the value ± x(k-i) to coefficient w(i). This second 
approach has also been applied to the VS-LMS algorithm 
[5], the Gradient Adaptive Lattice (GAL) algorithm [4], and 
the NLMS algorithm [7]. 

In (4) the term ||x(k)||2 is the sum of squares of input 
samples.  Cheng and Evans [7] describe circuits for 
approximate squaring, the simplest of which requires no 
hardware at all - it simply maps the bits of the input value to 
different locations in the output word.  This approach is 
compatible with PTQ in adaptive filter implementation [7]. 

In the present paper, we re-consider an earlier 
approach to the simplification of the adaptation arithmetic in 
which both inputs to a multiplication are coded using PTQ 
[6].  The multiplication is then replaced by addition of the 
PTQ code values, followed by “decoding” of the result.  This 
approach, which we call Power-of-Two Multiplication 
(PTM), may be regarded as floating-point arithmetic with an 
exponent but no mantissa, or as a coarse form of logarithmic 
arithmetic.  In [6] it was used in an NLMS echo canceller. 

In section 2 we define PTM, and in section 3 we 
explain how it can be used in an (N)LMS adaptive filter.  In 
section 4 we derive the implementation costs of PTM, and in 
section 5 we compare it with the cost of PTQ plus shifters.  
We show that for the (N)LMS and GAL algorithms PTM 
probably has no advantage over PTQ.  However in section 6 
we show how PTM may be applied to the median-LMS filter, 
and demonstrate that it offers significant cost savings in that 
application. 



2. POWER-OF-TWO MULTIPLICATION 
In practice, the use of PTQ in [4,5] is implemented 

by encoding the sign and the magnitude of the error using 
an encoder with a transfer function such as the following: 

{ 0  | u | ≥ 1  (8) 
C(u) =  { └log2(| u |)┘, 12 | | 1B u− + ≤ <  (9) 

  { -B  or -B+1, 1| | 2 Bu − +<  (10) 
S(u) = sign(u) 

In [4,5] each x(k-i) is input to a negater controlled by 
S(e(k)), and the result is shifted under the control of 
C(e(k)).  In PTM, multiplication of two variables is appro-
ximated by adding their code values and decoding the 
result.  Similarly division is replaced by subtraction. 

From (9) we see that code value p = C(u) implies 
2 p ≤ | u | < 2 p+1, 

provided -B < p < 0.  Thus if we replace multiplication by 
adding together two code values p and q = C(v), then 

2 p+q ≤ | uv | < 2 p+q+2.   (11) 
Hence the most appropriate power of two to output as the 
decoded value of p+q is 2 p+q+1, the harmonic mean of the 
two bounds in (11).  By the same argument, if we replace 
division by subtraction of code values, the most 
appropriate power of two to output as the decoded value of 
p-q is 2 p-q.  If a combined multiplication and division are 
replaced by addition of codes p+q and then subtraction of 
a third code r, then we can show that, on average, 2 p+q-r is 
equal to the correct result multiplied by 0.72.  It is 
therefore best, by a small margin, to decode the code value 
as 2 p+q-r+1. 

The optimum strategy is therefore: 
•= when adding code values, add 1 to the result; 
•= decode the magnitude of code value s as D(s) = 2 s.   

As with all finite-precision arithmetic systems, it is 
necessary to handle overflow.  That is considered further 
in section 4. 

The code values defined by (8-10) were chosen for 
convenience of explanation.  Note that the actual code 
values may be altered if it makes implementation of the 
coder C(u) and decoder D(s) easier.  Our implementation 
adds an offset of +B to C(u) as defined in (8-10), and a 
corresponding change is made to the decoder (including a 
binary shift to give correct overall scaling). 
 
3. APPLICATION OF PTM TO (N)LMS 

To apply PTM to the LMS algorithm (3), we could: 
•= encode e(k) :  E = C(e(k)); S = sign(e(k)); 
•= encode data values: Xi = C(x(k-i)); Si = sign(x(k-i)); 
•= add code values, decode, and update each coefficient: 

wi(k+1) = wi(k) + S × Si × D( E + 1 + m + Xi ), 
where µ = 2m.  Figure 1 shows the implementation.  Since 
the hardware cost of a coder having J-bit output is greater 
than the hardware cost of a J-bit parallel latch (see section 
4) it is best to use a single encoder CX of the input data 
[X0 = C(x(k)); S0 = sign(x(k))] and then feed its output into 
a shift register from which [ Xi ; Si ] can be read out, as 
shown in Fig.1. 

In Fig. 1, blank rectangles are stores, the input data 
wordlength is N bits, the code values (including sign) are J 
bits, and only the adaptation arithmetic for the first tap is 
shown; the other taps are identical. 

To apply PTM to NLMS (4), we would instead: 
•= compute g(k) = ||x(k)||2 using the approximate squarer 

described by Cheng and Evans [7]; 
•= encode g(k) + a :  G = C(g(k) + a); 
•= update each coefficient as follows: 

wi(k+1) = wi(k) + S × Si × D( E - G + 1 + m + Xi ), 
where µ�  = 2m.  Subtraction of G replaces division. 
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Figure 1 - LMS adaptive filter using PTM 

 
4. LOGIC IMPLEMENTATION OF PTM 

The encoder C(u) (8-10) may be implemented by 
first negating the input u if it is negative, and then generating 
the index of the highest power of 2 in the resulting binary 
number.  A further small approximation may be used to 
reduce implementation cost: instead of negation (2’s comple-
ment) we implement inversion (1’s complement).  Assuming 
that the input is an N-bit 2’s complement value, the (N-1)-bit 
output u  can be obtained using N-1 XOR gates, all with the 
MSB as one input.  Assuming that transmission-gates [9] are 
used, this requires 2+6(N-1) transistors (including a saving 
because the MSB is a common input to all the XORs).  The 
remainder of the encoder can be implemented with a NOR-
NOT ladder to produce a “thermometer code” (in which all 
bits from the LSB up to the highest “1” in u  are “1”) which 
uses 6N-10 transistors, followed by a NAND network, which 
requires 28 transistors for 8-bit input, 3-bit output, or 46 
transistors for 12-bit input, 4-bit output, or 72 transistors for 
16-bit input, 4-bit output.  Hence the overall cost for an 
encoder C is 110 transistors for 8-bit input, 176 for 12 bits, or 
250 for 16 bits (and more efficient designs may exist). 

An N-bit parallel latch may be implemented using 
18N transistors, and an N-bit full-adder (with no carry into 
the LSB stage) using 34N-20 transistors. 

The decoder D starts with a 3 (or 4)-line to N-line 
decoder, which can be implemented using 50 transistors for 
8-bit output, rising to 116 transistors for 16-bit output.  To 
handle overflow, the decoder can easily be modified to take 
as an additional input the MSB carry-out of the adder a, and 
if that carry-out (overflow bit) is 1, to output a “1” in its most 
significant output bit. 



This could be followed by an inverter (again as an 
approximation to a negater) at a cost of 2+6N transistors, 
feeding adder b in Fig. 1.  However, it is possible to exploit 
the restricted form of the decoder output to reduce implem-
entation cost.  The combined circuit either adds or subtracts 
a “1” at a single bit position, at a cost of <28N transistors.  
One of the N bits of this circuit is shown in Fig. 2. 
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Fig. 2. One bit of the “single-1” adder/subtracter 

In Fig. 2, S0 is the negation control (= S × Si); two 
transistors are saved in each of the XORs marked a because 
they share a common input S0 (common for all i).  wbi is the 
ith bit of the coefficient, and ci is the ith bit of the coder 
output (only one at most of these bits is “1”).  CI and CO 
are the carry-in and carry-out (both negative logic). 
 
5. COMPARISON BETWEEN PTM AND PTQ 

In the PTQ approach of [4,5] the coder CX and 
latches c in Fig. 1 are not required, and instead of the adder 
a and decoder D0, the data input x(k) is input to a shifter 
with control input α in Fig. 1, either preceded or followed 
by a negater.  A similar negater and shifter are required at 
each filter tap.  The parallel shifter may be efficiently 
implemented with a 0/1-bit-shift stage followed by a 0/2-
bit-shift stage, a 0/4-bit-shift stage, etc.  Again assuming 
that transmission-gates are used, the basic cost of an N-bit 
K-stage shifter is 4NK transistors.  In the case of a down-
shifter, the number of transistors is reduced a little if the 
output wordlength is truncated.  In the case of an up-shifter, 
extra transistors are required.  In comparing PTQ and PTM, 
we will assume a downshifter.  The negater can again be 
replaced by an inverter (costing 2+6N transistors).  (If the 
inverter follows the shifter then true negation may be 
achieved by inputting a carry into the LSB of adder b.) 

The resulting transistor counts (per filter tap) are 
shown in Table 1.  For the PTM approach, the count covers 
the latches c, the adders a, decoders Di, and modified 
adder/subtracters b.  For PTQ, the count covers the shifter, 
inverter and adder b.  Three examples are used: 

 
System PTQ PTM 

8-bit wordlength, 3-bit+sign coder 381 438 
12-bit wordlength, 4-bit+sign coder 620 632 
16-bit wordlength, 4-bit+sign coder 844 770 

Table 1 - LMS: Transistor cost per filter tap 
 
The cost of the coder CX for the PTM scheme (one 

per whole filter) is not included above.  (It is 110 - 250 
transistors, for input wordlength 8-16 bits.) 

From Table 1, we conclude that the implementation 
costs of PTM and PTQ in the LMS algorithm are very 
similar.  The additional implementation cost of the NLMS 
algorithm (that is, the computation and coding of g(k) + a, 
and subtraction of G from E) is identical for the two appr-
oaches, so the same conclusion applies to NLMS.  The 
adaptation performance of the two methods is similar, but 
PTM is slightly noisier than PTQ.  Therefore it is probable 
that PTQ is preferable for (N)LMS implementation. 

We have carried out a similar comparison for the 
GAL algorithm, and although the costs are again similar, the 
advantage of the PTQ approach is slightly greater still. 

 
6. APPLICATION TO MEDIAN-LMS 

In [11] the median-LMS algorithm is described, 
which has greatly improved robustness against impulsive 
noise.  In this algorithm, a length K median filter is 
introduced at the input of each coefficient update adder 
(point d in Fig. 1).  The median filter outputs the median of 
its most recent input and the K-1 preceding inputs.  A 
hardware implementation [11] can exploit the fact that at 
each sample time the previous K values are already ordered 
in value.  The oldest input must be deleted, and the new input 
must be placed in its correct place in the ordered list; this 
requires K-1 comparisons. A comparison is equivalent to a 
subtraction followed by testing the MSB of the result. 

In the PTQ approach, the correction terms output 
from the shifter and input to the median filter are of 
wordlength equal to the coefficient wordlength N. 

In the PTM approach, because C(u) is a monotonic 
function of | u |, the median filtering may instead be 
performed on the composite value z = S(u) × C(u), before 
decoding.  The pair (S(u), C(u)) is a J-bit sign+magnitude 
representation of z, and a comparator for numbers in this 
form comprises a (J-1)-bit XOR (to invert one of the inputs, 
if the signs of the two inputs are the same) followed by a    
(J-1)-bit adder and a small amount of additional logic. 

Hence within the median filter, both the stores and 
the comparators cost less, in a ratio approaching (J-1) / N.  
Because the output of the median filter is in coded form, the 
decoder D0 follows the median filter and the simplified 
adder/subtracter shown in Fig. 2 can again be used. 

Examples of cost per filter tap are given in Table 2, 
assuming the median filter length K = 5.  The values in Table 
2 are the sum of the cost shown in Table 1 and the cost of K 
stores and K comparators; the other median filter circuitry is 
common to either approach. 

 
System PTQ PTM 

8-bit wordlength, 3-bit+sign coder 2441 1298 
12-bit wordlength, 4-bit+sign coder 3760 1782 
16-bit wordlength, 4-bit+sign coder 5064 1920 

Table 2 - MLMS: Transistor cost per filter tap 
  
A slight further saving may be achieved by converting the 
sign+magnitude data at the median filter input to 2s-
complement words of the same wordlength, and 
implementing the median filter using conventional 
comparators. 
 



6.1 Adaptation Performance 
Test data was generated consisting of a binary data 

signal (±64) input to an FIR filter with impulse response 
[1.0, -0.1, 0.1, 0.0, 0.05, 0.15, -0.05], with noise added 
together with “impulsive” “spikes”, as shown in Fig. 3(a). 

Fig. 3(b) shows the learning curve (averaged over 10 
trials) of a standard LMS adaptive filter of length M = 7, in 
system identification mode.  For clarity plots 3(b-d) are 
scaled so that 0dB implies (rms error = 64). 

Fig. 3(c) shows the learning curve of a floating-point 
median-LMS adaptive filter of length M = 7, with median 
filter length K = 5.  Note the reduced vertical axis range. 

Fig. 3(d) shows the learning curve of a median-LMS 
adaptive filter of length M = 7, with median filter length K 
= 5, implemented using the PTQ/PTM method described on 
the previous page.  Note that although the plot is different 
in detail, both the peak error response to input spikes, and 
the converged error level, are very similar to those of the 
full floating-point median-LMS filter. 
 
8. CONCLUSIONS 

The PTQ method using shifters [4-5] is the best way 
to implement reduced-implementation-cost (N)LMS and 
(N)GAL algorithms with very little adaptation performance 
impairment.  However, the Power-of-Two Multiplication 
method described in this paper results in a significantly 
lower-cost implementation of the median-LMS filter. 
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Fig. 3(a) Input data to adaptive filter 

 

0 50 100 150 200 250 300
-40

-30

-20

-10

0

10

20

30

40
LMS - note vertical scale

dB

 
Fig. 3(b) Learning curve of LMS filter 
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Fig. 3(c) Learning curve of median-LMS filter 
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Fig. 3(d) Learning curve of PTM-median-LMS filter 

  


