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ABSTRACT 
Subspace-based robust blind channel identification algorithm[1] 
using sign covariance matrix has recently been proposed to mitigate 
the adverse effect of impulsive noise. Since batch eigen-
decomposition, which is computationally very expensive, needs to 
be implemented to estimate subspace of the sign covariance matrix 
for channel vector estimation, a subspace-tracking-based channel 
identification scheme is naturally more preferable to reduce 
complexity. Unfortunately, conventional RLS-based subspace 
tracking algorithms[4], which has much lower computational 
complexity though, are widely known to be sensitive to impulse 
noise in nature. In order to overcome this dilemma, we herein 
propose a robust channel identification scheme based on robust 
statistics subspace tracking algorithm. This scheme is shown to be 
able to further improves the robustness of channel identification in 
impulsive ambient noise in comparison with it’s sign covariance 
matrix based counterpart, while it’s computational complexity is 
substantially lower than that of latter.  Moreover, even if the 
estimation of sign covariance matrix can be carried out recursively 
in a symbol-by-symbol fashion and then adapt to the variance of 
channel coefficients, our simulation results show that the robust 
approach we propose in this paper has comparable tracking 
capability in term of tracking speed, but smaller steady state error 
resulting from it’s higher robustness, for both sudden change and 
slow time-varying channel with impulsive noise. 

1.    INTRODUCTION 
Blind channel identification using second order statistics has 
received considerable attention recently because of its potential 
application in communications and other signal processing 
problems.  An effective approach is the subspace-based blind 
identification method [2,3], where oversampling is used to convert 
the single-input and single-output (SISO) linear time-invariant 
channel to an equivalent Single-Input Multi-Output (SIMO) model 
for identification.  The signal and noise subspaces of the covariance 
matrix of the channel outputs can then be used to determine the 
channel coefficients, under mild condition.  The signal and noise 
subspaces are usually computed from the eigen-decomposition of the 
covariance matrix.  Most recently, the problem of robust channel 
identification in non-Gaussian noise with impulsive characteristic 
was studied, due to their practical importance in communications.  
The adverse effect of the impulse noise is suppressed by replacing 
the covariance matrix with a sign covariance matrix. Simulation 
results showed that the sign covariance matrix based channel 
identification scheme is more robust than the conventional 
covariance matrix approach.  Both methods, however, involve batch 
eigen-decomposition of the covariance or sign covariance matrices 
of received sample vectors, which is known to be very 
computationally expensive.  It is natural to consider using fast 
subspace tracking algorithms for tracking the signal or noise 
subspaces, if lower computational complexity is desired.  The PAST 
and PASTd algorithm [4] are two such algorithms employing a 
recursive least squares (RLS)-liked algorithm.  Although the PAST 
and PASTd algorithm have an arithmetic complexity of order O(Nr), 
where N is the dimension of the matrix and r is the number of signal 
eigenvectors to be tracked, they are extremely vulnerable to impulse 
noise.  Simulation results in [12] showed that the estimation errors of 
the RLS-based PAST and PASTd algorithms increase significantly 
when the ambient noise is corrupted by additive impulse noise. 
Hence, blind channel identification employing these and similar 
RLS-based subspace tracking algorithms are very likely to suffer 
from the same problem.  This motivates us to consider in this paper 
subspace tracking based blind channel identification algorithms that 
require substantially lower computational complexity than the sign 

covariance matrix method, while sharing it’s immunity to impulse 
noise.  In particular, a new correlation matrix, based on robust 
statistics [13], is proposed to suppress the adverse effect of the 
impulse noise.  The robust PAST algorithm that we have previously 
proposed in [12] is then employed for tracking the signal subspace.  
This robust PAST algorithm is similar to the robust statistic based 
adaptive filters in [5,7-11,13], where those impulse-corrupted data 
vectors are detected using robust M-estimator and are prevented 
from corrupting the subspace estimate.  Simulation results show that 
the proposed robust subspace channel identification method can 
more effectively mitigate the adverse effect of the impulse.  And, its 
tracking ability and response to sudden change of channel 
coefficients are comparable to that of the sign covariance matrix 
based method, if recursive updating of sign covariance matrix and 
batch eigen-decomposition are employed in the latter.   

The layout of the paper is as follows: Section 2 is a brief 
description of the blind channel identification problem. Section 3 
introduces the subspace-based channel identification method and the 
PAST subspace tracking algorithm [4]. The proposed robust 
subspace tracking algorithm and its corresponding channel 
identification scheme are introduced in Section 4.  Simulation results 
and comparison with the covariance approach are presented in 
Section 5. The conclusions are drawn in Section 6.  

2.   SIGNAL MODEL 
Consider a base-band channel identification problem where the 
information symbols ( )s n  are emitted by the digital source at time 
nT , where T is the duration of symbol. Let ( )h t  be the overall 
impulse response of the channel due to pulse shaping, channel 
response, modulation and demodulation.  The received continuous 
baseband signal is given by 

                    ( ) ( ) ( ) ( )
m

x t s m h t mT v t
∞

=−∞

= − +∑ ,                            (1) 

where  ( )v t  is an additive noise, which is assumed to be Gaussian 
distributed and is independent from the symbols transmitted. Eqn. 
(1) can be converted to an equivalent SIMO model by oversampling 
the signal received, by a factor of P say. Let ( )x n be a (Px1) column 
vector with its elements those samples taken at the n-th interval of 
period T.  We have 

       
0

( ) ( ) ( ) ( )
L

k

x n h k s n k v n
=

= − +∑ ,                               (2) 

where TPPTnTxPTnTxnTxnx ))]/)1((()),...,/((),([)( −−−= ; 
( )h k , L , and ( )v n  are, respectively, the channel impulse response, 

the channel order, and the additive white Gaussian noise vector 
(AWGN) with power spectral density 2σ .  Stacking 1N +  
successive samples of the received signal into one column vector, 
i.e., ( ) [ ( ), ( 1),..., ( )]T T T TX n x n x n x n N= − − , we obtain, 

( ) ( ) ( )NX n S n V n= ⋅ +H ,                                 (3) 

where ( ) [ ( ), ( 1),..., ( )]TS n s n s n s n N L= − − − ,  
           ( ) [ ( ), ( 1),..., ( )]T T T TV n v n v n v n N= − − ,  
and NH  is the channel convolution matrix given by 
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3.  SIGNAL SUBSPACE BASED CHANNEL 
IDENTIFICATION 
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Subspace-based blind channel identification was first introduced in 
[3] by exploiting the structure of the filtering matrix NH . It is based 
on the covariance matrix XR  of  the received sample vector ( )nX  
which is given by 

[ ( ) ( )] ,H H
X N S N VE X n X n= ⋅ = ⋅ ⋅ +R H R H R    (4) 

where [ ]E !  denote the mathematical expectation, 
[ ( ) ( )]H

S E S n S n= ⋅R , [ ( ) ( )]H
V E V n V n= ⋅R  are, respectively, the 

covariance matrix of transmitted symbol vector ( )S n  and  noise  
vector ( )V n . We assume the transmitted symbol vectors are i.i.d. for 
successive symbol intervals, and the noise covariance matrix is 
given by 2

V σ= ⋅R I . To ensure channel identifiably, the sub-
channels resulting from the SIMO model are assumed to have no 
common zeros.  We also assume that we have prior knowledge about 
the maximum channel order L . It can be seen that the signal and 
noise subspaces can be separated by performing an eigen-
decomposition of the matrix XR . Let iλ  and iu  be the eigenvalue 
and its eigenvector of XR . If the eigenvalues are arranged in 
descending order of their magnitudes such that 

2
1 1... ...K K nλ λ λ λ σ+≥ ≥ ≥ = = = , then the corresponding column 

span of eigenvectors: ],...,[ 1 Ks uu=U  and 1[ ,..., ]K Mn u u+=U  
constitute, respectively, the signal subspace and noise subspace, and 
we have  

[ ]
T

sH s
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n n
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where 1[ ,..., ]Mu u=U , 1( ,..., )Mdiag λ λΣ = , ),...,( 1 Ks diag λλ=Λ , 
and 1( ,..., )n K Mdiag λ λ+Λ = , 1K L N= + +  is the dimension of 
signal subspace, and ( 1)M P N= ⋅ +  is the dimension of XR .  Let’s 
partition the signal subspace eigenvector as 

( ) ( ) ( )
0 1[ , ,..., ]

T T Ti i i T
i Nu u u u=                                      (6) 

and define the following matrix Q  
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where iq  is the filtering matrix of iu  given by 
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It was proved in [3] that the channel vector 
[ (0), (1),..., ( )]T T T Th h h h L=  can be estimated from the eigenvector 

of Q  having the maximum eigenvalue, and the solution is unique 
except for a scaling by a multiplicative constant.   

In order to efficiently estimate the subspace parameters, 
subspace tracking algorithms such as the PAST and it’s deflation 
version PASTd [4] can be employed. The PAST algorithm [4] is a 
RLS-based algorithm which can be summarized as follows 

PAST Algorithm 
Initialize )0(P and )0(W  
FOR  ,....2,1=i  DO 

( ) ( 1) ( )Hy i i X i= −W , )()1()( iyiih −= P , 

)]()(/[)()( ihiyihig H+= β ,

)}()()1({1)( ihigiTrii H−−= PP
β

, 

( ) ( ) ( 1) ( )e i X i i y i= − −W , 

)()()1()( igieii H+−= WW . 

The superscript H denotes Hermitian transpose and the operator 
}{⋅Tri  indicates that only the upper (or lower) triangular part of the 

matrix argument is calculated and its Hermitian transposed version 
is copied to the lower (or upper) triangular part.  For each input 
vector ( )X i , the algorithm computes a new estimate of the signal 

subspace )(iW  ( sÛ ) from the previous estimate )1( −iW .  β  is 
the forgetting factor.  As mentioned earlier, the performance of this 
algorithm, like the RLS algorithm, is extremely sensitive to the 
impulse noise.  Suppose that )(in  is modeled as a contaminated 
Gaussian noise given by )()()()( inibinin ig ⋅+= , where )(in g  and 

)(ini  are uncorrelated zero mean white Gaussian processes with 
covariance matrices Mσ I  and i Mσ I , respectively.  )(ini  represents 
the impulsive component with σσ >>i . }1,0{)( ∈ib  is a random 
binary sequence independent of )(ini , which indicates the presence 
(absence) of an impulse at time i if 1)( =ib (0).  It can be shown that 
the correlation matrix XR  in (4) becomes 

2 2 2[ ] [ ( )]H H
X N S N M i ME X X E b iσ σ= ⋅ = ⋅ ⋅ + +R H R H I I .  Any 

subspace tracking or eigen-decomposition methods for estimating 
the subspaces from [ ]H

X E X X= ⋅R  will be significantly affected 

by the impulsive component 2 2[ ( )] i ME b i σ I .  Here, we define the 

robust correlation matrix [ ]H
X E X Xρ ρ= ⋅ ⋅XR , where Xρ  is a 

weight function which should ideally be zero when an impulse is 
detected in vector X  and 1 otherwise.  Under this assumption, 

2H
X N S N M
ρ σ≈ ⋅ ⋅ +R H R H I , which stabilizes the subspace 

estimation.  The definition of X
ρR  can be justified more formally 

using maximum likelihood estimation.  The details are omitted here 
due to page limitation.  We shall show in next section that the weight 
function Xρ  can be derived from the error in the PAST algorithm so 
that a more robust algorithm against impulse noise can be developed 
[12]. 

4.  ROBUST SUBSPACE TRACKING AND CHANNEL 
IDENTIFICATION ALGORITHMS 

We see in section 3 that the conventional correlation matrix and 
hence the PAST algorithm is extremely sensitive to impulse noise in 
the data vector ( )X i .  In the PAST algorithm, the measure 

2 2( ) || || || ||HJ E X X E e= − =W WW  is minimized using the RLS 
algorithm.  It can be seen from the PAST algorithm given in the 
previous section that )(iy , )(ih , )(ig , )(iP , )(ie , and )(iW  will 

be affected in turn by an impulse in ( )X i .  The corrupted 
matrices, )(iP  and )(iW , will be used to compute the new )(iP ’s 
and )(iW ’s, causing hostile effects on the subspace estimate and 
requires many iterations to recover, especially when β  is close to 
one.  We now consider the proposed robust PAST algorithm using 
robust statistic.   First of all, we note that the purpose of Xρ  in the 

robust correlation matrix estimate X
ρR  is to de-emphasis the 

impulse-corrupted observation ( )X i .  A similar approach can be 
applied to the PAST algorithm by defining a robust distortion 
measure 2||)||(||||)( eeEJ eF ⋅−= µρρ W , where )(⋅ρ  is the weight 
function of an M-estimator [13]. For the Huber M-estimate that will 
be used in this paper,  )(eρ =1 when Te <||  and 0 otherwise, where 
T is a threshold to be estimated continuously. eµ  is the robust 
location or mean estimator of Fe |||| .     It can be seen that if ( )X i  is 
corrupted by impulses, the Frobenius norm of the error vector )(ie , 

F
ie )( , will become very large. )||(|| eFe µρ −  will become zero 

and the impulse-corrupted measurement is prevented from entering 
into the minimization.   A similar approach has been successively 
applied to develop robust adaptive filters under impulse noise [5,7-
11].  We now consider the estimation of the threshold T and the 



  

robust mean estimator eµ  (for simplicity, the subscript e in eµ  will 
be dropped in the subsequent discussion).  Though the exact 
distribution of 

F
ie )(  is unknown, for simplicity, it is assumed to be 

Gaussian distributed but corrupted by additive impulse noise (note 
also that 

F
ie )(  is always positive). Specifically, the probability that 

)(ˆ)()( iieie
F

µµ −=∆  is greater than a given threshold )(iT  is  

)}()({ iTiePp rT >∆= µ ( ))(ˆ)( iiTerfc σ= ,   (9) 

where dxererfc
r

x∫
∞ −=

2

)/2()( π  is the complementary error 

function. )(ˆ iµ  and )(ˆ iσ  are the estimated mean and standard 
deviation of the Frobenius norm of the “impulse free” error vector.  
Using different threshold parameters T(i), we can detect the presence 
of the impulse noise with different degrees of confidence. In this 
work, Tp  is chosen to be 0.05 so that we have 95% confidence in 
saying that the current error vector is corrupted by impulse noise.  
The corresponding threshold parameter )(iT  is determined to be 

)(ˆ96.1)( iiT σ⋅= .  A commonly used estimate for )(ˆ 2 iσ  and )(ˆ iµ  
are respectively: 222 ))()(1()1(ˆ)(ˆ ieii µσσ λσλσ ∆−+−=  and 

F
ieii )()1()1(ˆ)(ˆ µµ λµλµ −+−= , where µλ  and σλ  are some 

forgetting factors.  It is, however, not robust to impulse noise.  In 
fact, a single impulse with large amplitude can substantially increase 
the value of )(ˆ iσ  and )(ˆ iµ , and hence the values of )(iT . Better 
estimates for )(ˆ 2 iσ  and )(ˆ iµ  are [6] 

( ))))(((med)1(
1

51483.1)1(ˆ)(ˆ 222 ieA
N

ii
w

µσσ λσλσ ∆−





−

++−=    (10a) 

and    ( )))((med)1()1(ˆ)(ˆ
F

ieAii µµ λµλµ −+−= ,           (10b) 

where { })1(,),())(( +−= wNixixixA " , wN  is the length of the 
estimation window, and med(.) is the median operation. µλ  and σλ  

are the forgetting factors.  In practice wN  varies from 5 to 11 so that 
the operations required by the median operations are quite 
reasonable. For large values of wN , the pseudo median instead of 
the median can be computed to reduce the arithmetic complexity.  
Therefore, the arithmetic complexity of the proposed robust PAST 
algorithm is comparable to that of the conventional PAST algorithm.   

Robust PAST Algorithm 

Initialize )0(P , )0(W , )0(ˆ 2σ , and )0(µ̂  

FOR  ,....2,1=i  DO 
( ) ( 1) ( )Hy i i X i= −W , )()1()( iyiih −= P , 

)]()(/[)()( ihiyihig H+= β ,

)}()()1({1)( ihigiTrii H−−= PP
β

, 

( ) ( ) ( 1) ( )e i X i i y i= − −W ,  

)}()()1({1))((
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ihigiTriie
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P

PP

β
ρ

ρ

µ

µ

,  

)()())(()1()( igieieii H
µρ ∆+−=WW , 

update )(ˆ 2 iσ  and )(ˆ iµ using (11), 
   )(ˆ96.1)( iiT σ⋅= , 

END   

Our robust PAST algorithm updates )(ˆ96.1)( iiT σ⋅= , )(ˆ 2 iσ  and 

)(ˆ iµ  at each iteration.  If )()( iTie >∆ µ , both signal subspace 

)(iW  and the intermediate matrix )(iP  will not be updated, 
preventing the impulse from affecting the subspace estimate. Using 

the weight function: 1))(( =∆ ieµρ  when )()( iTie <∆ µ , and 0 

otherwise, the above robust PAST algorithm that minimizes )(WρJ  
is obtained. 

5. SIMULATION RESULTS 
The performance of proposed robust channel identification 
algorithm is investigated under the ε -contamination noise model, 
and compared with channel identification methods based on 
covariance matrix and sign covariance matrix. The probability 
density function (pdf) of the ε -contamination noise model is 
defined as  

22(1 ) (0, ) (0, )If N Nε σ ε σ= − + ,                   (11) 

where 0 1ε≤ ≤ , 2(0, )N σ  is the pdf of the Gaussian background 

noise, 2(0, )IN σ is the pdf of the impulse noise. In our simulation, 
the impulse noise occurrence probability ε  is set to 0.1, and with 

2

10 210 log 30I dBσ
σ

⋅ = . The transmitted symbols are equally 

distributed random 4 QAM− signal, which are independent between 
sample durations. The noise is uncorrelated with the transmitted 
symbols and is i.i.d. for different symbols. To facilitate the 
performance comparison between the proposed algorithm and the 
conventional covariance and sign covariance matrix based 
algorithms [1], the same channel setting as in [1] is employed in the 
following simulation:  the number of virtual channel is 4P = , the 
length of temporal window is 10N = , the order of channel ISI is 

4L = . The channel coefficients are:  
0 [( 0.049 0.359 ),(0.443 0.0364 ),Th j j= − + −   

          ( 0.221 0.322 ),(0.417 0.030 )]j j− − +  

1 [(0.482 0.569 ),(1),Th j= − ( 0.199 0.918 ),(1)]j− +  

2 [( 0.556 0.587 ),(0.921 0.194 ),Th j j= − + − (1),(0.873 0.145 )]j+  

3 [(1),(0.189 0.208 ),Th j= − ( 0.284 0.524 ),(0.285 0.309 )]j j− − +  

4 [( 0.171 0.061 ),( 0.087 0.054 ),Th j j= − + − −    
         (0.136 0.19 ),( 0.049 0.161 )]j j− − +  
The power of the Gaussian background noise is 20dB lower than 
that of the signal of interest.  The median filter length wN  is set to 
be 9, and the forgetting factors µλ , σλ , and β  are all set equal to 

0.97. The initial value )0(P , )0(W  are chosen to be identity 
matrices or their leading submatrices. Both )0(ˆ 2σ  and )0(µ̂  are set 
to 10, a relatively large number to their normal value, to initialize 
system adaptation. The canonical angle between the estimated 
channel vector ĥ  and it’s true value h  is adopted as performance 

measure, which is defined as 
ˆˆ( , ) cos ˆ

Hh hh h a abs
h h

  
  ≡   ⋅   

% , 

where !  denotes the Euclidean norm. The MSE of the estimated 

channel is defined as 2

1

1 ˆ( , )
mN

i
im

MSE h h
N =

= ∑%  where mN  is the 

number of Monte-Carlo trials, and îh  is the estimated channel 
vector of the i th trial. The performance of the proposed algorithm 
and its covariance matrix based counterpart are compared in Figures 
1 to 3. In Fig.1, the individual and consecutive impulse noise 
intrudes the system from the 200th symbol. It can be clearly observed 
in Fig.1 that the covariance matrix based method is significantly 
affected by the impulsive noise, while the sign covariance matrix 
based method is also affected, but to a smaller extent. Whereas, the 
robust subspace tracking based scheme remain largely unaffected, 
suggesting that it is much more robust to the presence of impulsive 
noise than the former two algorithms. In Fig.2, the individual and 
consecutive impulse noise intrudes the system from the 100th 
symbol, and the channel coefficients are suddenly changed at the 
200th symbol duration when the channel vector h  changes from 



  

0 1 2 3 4[ , , , , ]T T T T T Th h h h h h=  to '
1 0 2 3 4[ , , , , ]T T T T T Th h h h h h= . It is evident 

from Fig.2 that, from the 100th to 200th symbol, the proposed 
algorithm manifest its much higher robustness than the other two 
algorithms after impulse noise intrude the channel; from 200th to 
400th symbol, the propose algorithm is shown to have a comparable 
adaptation speed to sudden channel change in impulse noise 
environment when compared with the other two algorithms; and 
furthermore from 400th to 600th symbol, it is shown to have smaller 
steady state error than both the covariance and sign covariance 
matrix based method after they re-converge again, which suggesting 
it’s robustness and adaptation capability to sudden channel change in 
impulse noise environment. For slowly time-varying channel in 
Fig.3, the channel vector is set to be rotating in its vector space at a 
fixed but low angle velocity from the 100th symbol, and impulse 
noise intrude the channel from the 300th symbol.  Fig. 3 clearly 
demonstrates that the tracking capability of the proposed scheme in 
slowly time-varying channel is also comparable to that of the other 
two algorithms from the 100th to 300th symbol, but more robust than 
the other two algorithms when tracking channel coefficients in 
impulse noise environment after the 300th symbol. The data 
presented in Figs. 1 to 3 are generated by averaging over 100 
independent Monte-Carlo trials.   
 

6. CONCLUSION 
A new robust channel identification scheme based on robust PAST 
algorithm is presented in this paper.  A systematic method, using the 
robust statistic concept, is used to detect the impulse in the input 
data vector and prevent them from corrupting the signal subspace for 
further tracking.  Simulation results using the blind subspace-based 
channel identification show that the proposed scheme, using the 
robust subspace tracking algorithm, performs more robustly than the 
conventional covariance matrix and sign covariance matrix 
approaches in impulse noise environment, while it’s computational 
complexity is much lower than that of the latter two.  The adaptation 
capability of the proposed scheme in sudden changed channel and 
slow time-varying channel with impulse noise is also found to be 
comparable to that of covariance matrix based approaches, while it 
is shown to have smaller steady state error, which suggesting higher 
robustness, than it’s covariance matrix based counterparts when 
tracking and adapting in impulsive noise environment.  
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Curve A: Covariance Matrix Based Approach 
Curve B: Sign Covariance Matrix Based Approach  
Curve C: Robust Subspace Tracking  Based Approach 
 

 
Fig. 1.  MSE of Channel Identification in impulse noise 

 

 
Fig. 2.  MSE of Channel Identification in sudden change channel 

 

 
Fig. 3.  MSE of Channel Identification in slow time-varying channel 

 
 


	ROBUST SUBSPACE TRACKING BASED
	BLIND CHANNEL IDENTIFICATION IN IMPULSIVE NOISE ENVIRONMENT

