
Abstract - A new technique for noise suppression 
in images by wavelet thresholding is presented. The 
technique focuses on perceptual relevant features, 
using a multiscale edge oriented wavelet 
representation. A orientation-dependent zero-memory 
non-linear soft thresholding rule  is defined in the 
framework of Bayesian MMSE estimation. 
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I. INTRODUCTION 

raditional signal and image denoising is 
linearly performed using Wiener filtering. 
More recently, non linear techniques applied to 

wavelet based representations have been introduced. 
Basically, these techniques consist of tresholding the 
wavelet coefficients, setting them to zero if they are at 
noise level, and retaining them if they represent 
significant structures. This technique, is also called 
“wavelet shrinkage”. Since the pioneering paper of  
Donoho [1] much work has been done for setting and 
optimizing thresholds under different criteria and 
using adaptive strategies (see for instance [2], [3]).  
These approaches are based on general wavelet image 
representations, such as Daubechies finite support 
wavelets. In the recent past, schemes  taking also into 
account statistical dependencies between wavelet 
coefficients have been devised.  
In this contribution, a new approach based on an edge 
oriented wavelet representation is presented. This 
choice has two advantages. From a perceptive 
viewpoint, it focuses on the most relevant visual 
image features. From the statistical processing 
viewpoint, it applies to coefficients more decorrelated 
in space. 
To this purpose, images are represented in a 
multiscale edge domain. Stemming from [4], where 
pairs of wavelet defined by smoothed vertical and 

horizontal derivatives were employed, a complex edge 
oriented wavelet is defined. So, in the transformed 
wavelet domain edges are represented by complex 
numbers with magnitude proportional to their 
“strength” and phase equal to their orientation angle. 
The use of  this complex representation simplifies 
algebra and notations. 
Signal and noise edges are modelled as 2D Gaussian 
mixtures. This flexible approach allows us to model 
different signals, and non Gaussian noises as well. 
The Bayesian MMSE estimate of the uncorrupted 
image is then calculated in a general form, leading to 
an estimator constituted by an anisotropic, zero 
memory non-linearity.  

II. THE EDGE WAVELET 

We refer to a multiscale feature decomposition 
based on CHFs (Circular Harmonic Filters), which are 
complex, polar separable filters defined by a Point 
Spread Function (PSF) with a polar representation of 
the kind 

( ) ( )( , ) ( ) , 0,1,2,...k k jkh r v r e kθθ −= =  (1) 
where r and θ are polar coordinates, k is the order of 
the CHF and v(k)(.) is the radial profile [5]. A first-
order CHF acts as a differential operator suited for 
edge extraction. Its output is a complex image whose 
magnitude is proportional to edge strength, and phase 
is equal to edge orientation.  

Let us now consider the specific family of CHFs 
with Gauss-Laguerre radial profiles. It is shown that 
each element of this family defines a dyadic Circular 
Harmonic Wavelet (CHW) suited for multiscale 
representation [5]. In particular, let us refer to a 
mother wavelet constituted by the following first-
order member of the CHF Gauss-Laguerre family: 

2(1) (1) 1/2 ( )
0( , ) ( , ) 2 ( ) ar jh r r a r e eπ θθ θ π −= =L .  (2) 

For notational convenience, let us denote with 
h(1)(n,m) the mother wavelet in discrete Cartesian 
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coordinates, and  with hs(n,m) the function obtained 
by dilation of h(1)(n,m) by a scaling factor s, i.e. 
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Let {s1, s2, ..., sL} be a finite sequence of scale factors 
corresponding to increasing  resolutions. For a given 
image ( , )y n m , the set of the complex images 
{ ( , ) ( , )* ( , ),

k ks sz n m y n m h n m= 1,2,..., }k L= , along 

with a coarse approximation at low resolution 

0

(0)( , ) ( , ) ( , )sz n m y n m h n m= ∗ , obtained with a low 

pass zero order CHF filter h(0)(n,m), constitute its 
wavelet representation in the multiscale complex edge 
feature domain. In fact,  
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where the reconstruction filters ( , )
ksg n m  are defined 

in terms of their Fourier transform as follows  
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where 1 2( , )
ksH ω ω are the frequency responses of the 

filters ( , )
ksh n m and 

0 1 2( , )sH ω ω (0)
1 2( , )H ω ω=  is 

the frequency response of the filter h(0)(n,m).   

 

III. THE BAYESIAN RESTORATION IN THE EDGE 
FEATURE DOMAIN 

Introducing a shorthand notation, let us consider an 
image Y={y(n,m)}, and its observed version YM 

={yM(n,m)} corrupted by an additive independent 
observation noise W={w(n,m)}. A Bayesian estimate 
~Y of Y, given YM, is obtained by the minimization of 

the associated absolute risk. Let { }( , )
k ks sz n m=ZM M  be 

the complex edge image at resolution sk of YM. Based 
on (4), we want to recover Y from the MMSE 
estimates of the complex edge images at different 
resolutions, respectively constituted by the a 
posteriori expectation { }( , )

k ks sz n m=Z% %  of 
ksZ , given 

ksZM . Looking for a suboptimum solution, let us now 

ignore residual spatial correlation. Thus, for each 
scale we evaluate the conditional expectation 

( , )
ksz n m% of ( , )

ksz n m given ( , )
ksz n mM at site (n,m) 

only. Let ( , ) ( , ) ( , )
k s sk k

T

s R In m z n m z n m =  z  be the  

2D vector corresponding to complex numbers 
( , ) ( , ) ( , )

k s skks R Iz n m z n m jz n m= + . Then, we  

describe the marginal distribution of ( , )
ks n mz with a 

rather general model constituted by a bivariate zero 
mean Gaussian mixture,  i.e. a weighted sum of 
bivariate Gaussian distributions:  
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=
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where N2[z;µ, R] denotes the Gaussian probability 
density function of a 2D random variate z=[zR zI]

T 
with expectation µ=[µR µI]

T and covariance matrix R.  
Let ),(),(),( mnhmnwmnz kk ss ∗=∆ be the coeffi-
cients of the CHW transform of the observation noise 
W modeled again as a zero mean bivariate Gaussian 
mixture with mixing parameters β j , namely, 
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Z s j s N
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  ∆ = ∆   ∑z z 0 RN

 (7) 

Application of Bayes rule  yields the following 
expression for the conditional expectation ˆ ( , )

ks n mz  of 

( , )
ks n mz , given ( , )

ks n mzM : 
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Eq. (8) says that in general, for signal and noise 
with bivariate Gaussian mixture distributions, the 
MMSE estimator is a non-linear combination of 
conditional linear estimators, with gains  

( ) 1
( , ) ( , ) ( , )

i j iZ N Zn m n m n m
−

+R R R  

each matched to a pair (i,j) of Gaussian submodels.  
The weights ( , )

kij sw n m  zM  are just the posterior 

probabilities of each submodel pair. 
As illustrated in Fig.1, where the magnitude 

ˆ ( , )
ks n mz of the estimated edge versus the observed 



(noisy) edge magnitude and orientation, for the 
reference case of  isotropic signal in anisotropic noise 
(e.g. noise aligned along the vertical direction), is 
reported, the Bayesian Zero Memory Non Linear 
(ZNL) estimator attenuates small edges more or less 
deeply, depending on their direction, thus acting  as 
an anisotropic shrinking function. Attenuation tends 
to zero for features orthogonal to the noise direction. 
For comparison, the conventional isotropic soft 
thresholding law is shown in Fig. 2. 

To perform the Bayesian estimate, the actual 
parameters of the mixture distributions must be 
known. Usually, they are adaptively determined by 
moment matching over windows centered around the 
point (n,m). Starting from the MMSE estimates of the 
CHW coefficients the restored image is finally 
reconstructed with the reconstruction formula (4).  

 

IV.  APPLICATION EXAMPLES 

The method presented here is intended for image 
quality improvement in multimedia applications, for 
instance in coding preprocessing  (as outlined in [3] 
and [4]) and in decoding post-processing. Here, let us 
first consider as an example the classical problem of 
cleaning images affected by Gaussian noise. This 
means that in the complex edge feature domain the 
marginal probability density function of ∆z(n,m) is 
simply modeled by (7) with M=1 
and R IN Nn m( , ) = σ 2 , where I is the identity matrix. 
We have used in this case a two-term mixture, and 
have locally tuned the ZNL estimator by moment 
matching in an 8x8 sliding window. In Figs.3 and 4 
the noisy image and the restored one are shown. 
Notice that textures are explicitly modeled as non 
Gaussian signals with preferred orientations. 

Let us consider now a new solution to the problem 
of restoring DCT block coded images affected by 
quantization artifacts. As well known, block DCT 
coders partition the original image Y into NxN blocks, 
separately represented with the quantized coefficients 
of their DCTs. The decoded image YM is then 
reconstructed by applying the inverse DCT to each 
block. Blocking artifacts manifest themselves as 
spurious edges at block boundaries. Provided that 
quantization is small, blocking noise can be 
considered additive and uncorrelated with the image. 
Since first order HAF is a differential operator, the 
blocking artifacts appearing in YM are “focused” in 
ZM on the block boundaries. In this case, the statistical 
model is assumed a priori. From statistical 
experiments conducted on different images, the 

distribution of ∆Z = ZM-Z is modeled by a two term 
Gaussian mixture with diagonal ),( mnjNR  matrices, 

i.e.: 
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Considering noise localization, we set σHj
 >> σVj

 

(σHj
<< σVj

) along horizontal (vertical) block 

boundaries, and σHj
 ≅ σVj

 for pixels interior to a block.   
Let us refer to the image Lena in its JPEG coded 

version at 0.33 bit/pel (Fig. 5). The Bayesian non-
adaptive de-blocking process gives the image 
displayed in Fig. 6. 

 

V. CONCLUSION  

With respect to previous wavelet coefficient soft-
thresholding techniques, the method described here 
presents additional features due to: 
- application to most perceptually relevant image 

features  
- use of flexible non Gaussian probabilistic models 

for both signal and noise, leading to anisotropic 
thresholding rules. 

- intrinsic spatial decorrelation of the representation 
coefficients in  the employed wavelet domain. 
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Fig. 1. ˆ ( , )

ks n mz versus ( , )
ks n mzM  magnitude and 

orientation for  noise aligned along  vertical direction 
and isotropic signal (σH1

=0.02,  σV1
=0.2,  σH2

=0.05,  
σV2

=0.1, β1=0.8,  σZ1
=0.1, σZ2

=1, λ1=0.99). 
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 Fig. 2. ˆ ( , )
ks n mz  versus ( , )

ks n mzM - conventional 

isotropic soft thresholding law. 

 

 

Fig.3 - “Baboon” image (512X512) with additive 

white noise 

 

Fig.4 -  Restored image. 
 

 
Fig.5 – JPEG decoded  image at 0.33 bits/pixel. 

 

      

Fig.6 –Restored image. 
 

( , )
ks n mzM   

ˆ ( , )
ks n mz  

( , )
ks n mzM  

ˆ ( , )
ks n mz  


