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ABSTRACT

A method is proposed to solve the unconstrained op-
timization problem related to the design of perfect re-
construction biorthogonal modulated filter banks. The
basic idea is to take advantage of some attractive prop-
erties of the parametrization of the underlying lifting
scheme-based structure. This approach allows the de-
sign of prototypes with thousands of coefficients. Nearly
optimal results are presented for two different optimiza-
tion criteria.

1 Introduction

Among the many different filter banks now available in
the literature, the critically decimated modulated filter
banks offer the possibility of a low cost implementation
and the availability of various design techniques. In the
case of biorthogonal modulated filter banks, the design
problem is restricted to the computation of two filters:
the analysis and synthesis prototype filters. Further-
more, the resulting filter banks can be used in many
different contexts, e.g. for subband coding using co-
sine modulated or modified discrete Fourier transform
(MDFT) [1], or for multicarrier transmission [2]. We
only concentrate here on the case of the perfect re-
construction (PR) biorthogonal cosine modulated filter
bank (CMFB), as it can be used in subband coding.

Denoting the number of subbands by M, the overall
system delay D = 2sM + d, s and d being two inte-
gers (0 < d < 2M — 1), is variable within given lim-
its imposed by the prototype filter’s length [1], which
is a significant advantage of biorthogonal CMFB com-
pared to orthogonal ones. In our case, as is also the
case for the examples presented in [1], the length is such
that L = 2mM, m being a positive integer. The design
problem is to find these L coefficients by optimization
of a given criterion. All commonly used design criteria
lead to highly non linear problems that cannot be eas-
ily solved. Consequently, most design techniques fail if
one wants to design very long (i.e. a few thousand co-
efficients) PR biorthogonal prototypes that are nearly
optimal.

In this paper, the design method is validated for two

different optimization criteria: the out-of-band energy
and the time-frequency localization. In the first step we
take advantage of the cascade structure resulting from
the application of the lifting scheme to the polyphase
components of the prototype filter [3]. This leads to an
unconstrained optimization problem with respect to a
set of (2m + 1)% parameters. In the second step, the
optimization of short or medium length prototypes re-
veals that, for both optimization criteria considered, the
optimized set of parameters have some attractive prop-
erties. We then take advantage of these different fea-
tures to derive new sets of parameters, named compact
representations or codes, which can accurately represent
the prototype filter. In this way we are able to simulta-
neously reduce the number of parameters to optimize,
from (2m + 1)& to (2m + 1)K, with K < &, while
nearly maintaining the quality of the results. Several
examples illustrate the efficiency of the compact repre-
sentation approach.

2 Biorthogonal CMFBs

A general M-band maximally decimated filter bank is
depicted in Fig. 1. In this scheme, the PR condition
is satisfied if the z-transforms of the output and input
signals are such that X(z) = 27X (z), Vz, with r an
integer delay.
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Figure 1: An M-band parallel filter bank.

2.1 The PR conditions

Biorthogonal CMFBs are a special case of such a parallel
filter bank, in which all the analysis and synthesis filters
are derived by modulation from one or two prototype
filters. We denote by p(n) in discrete-time, or by P(z)



in the z-domain, the common prototype to the analysis
and synthesis sections. Without loss of generality, we
assume that the modulated filters are obtained by a type
IV discrete cosine transform (DCT-IV). Thus, for 0 <
n < L—1, the analysis and synthesis filters are given by

[1]

hr(n) = 2p(n)cos((2k + 1)2LM(n - g) +6k), (1)
fulm) = 2p(m) cos(2k + 1)57-(n — 5) ~ 65), (2)

respectively, where 6 = (—1)’6%‘

A convenient way to express the PR condition is based
on the polyphase decomposition of the prototype filter.
Rewriting P(z) using the type 1 polyphase decomposi-
tion of order 2M [4], we get P(z) = Y20~ 271Gy (22M),
where G;(z) are the 2M polyphase components of P(z).

A common feature of the modulated filter banks pre-
sented in [1] for subband coding, or in [2, 5], for mul-
ticarrier transmission, is that they lead to an identical
set of biorthogonality conditions. Here, as we focus on
the more interesting case in a design context [1], we set
d=2M — 1. Then,for 0 <I <M —1and L =2mM,
the PR condition is given by

Gi(2)Gapr-1-1(2) + Gpi(2)Grr—1-1(2) = —
with s an integer parameter between 0 and m — 1.

2.2 Factorization with the lifting scheme

Using the lifting scheme, which was originally proposed
for the construction of biorthogonal wavelets [6], one can
obtain, as in [3], a factorization form of the PR condition
(3). We denote by A and B the matrices used, with
their inverses, for lifting and dual lifting, respectively,
which do not affect the delay and, similarly by C and D,
the ones which, with their inverses, increase the delay.
In the simplest case each matrix only depends upon a
real parameter, denoted by «
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When [ goes from 0 to % —1, 2m + 1 parameters, de-
noted aé, 1=1,...,2m+1, correspond to each quadru-
plet (Gi,Gpr—1-1, Gpryi, Ganr—1—1)- Let us present the
corresponding factorization when s is even, knowing
that the one when s is odd can be similarly derived.
If s is even we can set s = 2j;, m = i; +j1 +1, 41 and j;
being integers. Then the PR condition can be rewritten
using equations (6)-(7).

2.3 Design criteria

The factorization given by (6)-(7) for s even structurally
ensures the PR property as does its counterpart for s
odd. The design problem is to optimize the prototype
P with respect to the set of parameters such that o =
(aé)i:1,~~~,2m+1,l:0,---,%—1' As in [1], the first criterion
we have selected is related to the out-of-band energy.
Using a normalized frequency, i.e. a sampling frequency
equal to 1, the objective function to be minimized is
written as

1

E(fe) . % D pd2m 2

J(a) = with E(z) = / |P(e?“™)|%dv, (9)

E(0) 2

where f, is the cutoff frequency and 0 < J(a) < 1.
Another criterion, in use in the context of multicar-

rier modulation [2], is time-frequency localization. The

objective function to be maximized is given by

(@) = 77—, (10)

with mg and Ms, as defined in [7], the modified second
order moments in time and frequency, respectively. In
this case we know that 0 < {(a) < 1,£(a) = 1 being
the optimum.

3 Compact representation

3.1 Analysis of the optimal solutions

A similar analysis to the one proposed in [8] for orthog-
onal CMFBs shows that, with the lifting scheme, the
optimized solutions lead, to a relatively smooth func-
tion | — ol for all i € {1,...,2m + 1}. Let us define
the application ¢,s from the set {0, ..., % — 1} to the
interval [0,0.5) by

2l+1
oum(l) = oM (11)
J1
H C(al211+2j+2)D(al2i1+2j+3) ) (6)

j=1
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Fig. 2 and 3 illustrate the smoothness of the function
I — ol with respect to ¢ (1).
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Figure 2: Optimization of the localization: The first
four o coefficients (as a function of ¢(I) and for i =
1,---,4) of the lifting scheme with M = 32, L = 192,
s=0.

0O 005 01 015 02 025 03 035 04 045 05

Figure 3: Optimization of the out-of-band energy: The
first four ot coefficients (as a function of ¢ (I) and for
i =1,---,4) of the lifting scheme with M = 32, L =
192, s = 0.

3.2 Introduction of the compact representation

We denote by Px a K-dimensional vector subspace
of the real functions defined on [0,0.5) and by B =
(p1,---,pK) a basis of this subspace. To any K-uple
X;=(z},...,zK), withi=1,--- | 2m + 1, we associate
the ol coefficients by the application o = a; (¢ (1))
with ; = zlpy + -+ + zEpk. The sequence X =
(X1,-++, Xamy1), belonging to (R¥)2m+1 is the whole
set of all the compact representations. We will also say
that the application (z¥) — Px(z) corresponds to a
code or that, equivalently, Px(z) is coded by the set
(zF),k = 1,...,K,i = 1,...,2m + 1. For the simula-
tions presented in this paper, we used the two following
codes:

The trivial code— We choose K = % and we set
mi"'l =alforalll=0,--- ,% -1,i=1,---,2m+ 1.

The Chebyshev code— For K > 1, Pk is the sub-
space of polynomials of degree < K —1 and the selected
basis is derived from the set of Chebyshev polynomials

Ty, k=0,...,K —1. We then set

K
L= o (46m (D) - 1). (12)

k=1

3.3 Optimization

The choice of a compact representation with K < %,
naturally leads to a reduction in size of the parameter
space and, consequently, of the CPU design time. Let
the set of variables associated to the compact represen-
tation be denoted by z = (z¥),1 < i < 2m+1,1 <
k < K, then the unconstrained optimization problems
we have to solve are given by

mwin J(x) or by mmaxf(:l:), (13)

with J(z) = J(e) and &(x) = &(a) for the minimization
of the out-of-band energy and the maximization of the
time-frequency localization, respectively.

For both optimization problems, several experiments
have shown that, if no good initial solution is available,
the Chebyshev code can not only drastically reduce the
CPU design time but also can provide optimized solu-
tions of better quality than the trivial code. This prob-
lem, when using directly the trivial code, naturally tends
to become more critical when the number of free param-
eters increases.

L=4M L=6M L=38M
M=16 | J | 2.0332 x107% | 4.4090 x 10~ | 2.4713 x 1074
J* | 2.0332 x 1073 | 4.4089 x 10™* | 2.4260 x 10™*
M=32| J | 2.0364 x 1073 | 4.4746 x 10™* | 2.5275 x 10™*
J* | 2.0364 x 1072 | 4.4306 x 10™* | 2.4465 x 10™*
M=64 | J | 20372 x1072 | 45111 x 10°% | 2.5238 x 10~ %
J* | 2.0371 x 1073 | 4.4890 x 10~* | 2.4980 x 10~*

Table 1: Best out-of-band energy (J) for s = 1 found
for the Chebyshev code with K = 8 followed by an op-
timization with the trivial code (J*).

In order to illustrate the efficiency of the compact
representation, when using the energy criterion, a first
set of results is presented in Table 1. These results have
been obtained with the CSFQP software [9], setting s =
1 and using the following procedure:

e Firstly, the optimization is run with a Chebyshev

code such that K = §;

e Secondly, the result obtained with the compact rep-
resentation is used as an initial solution to solve the
corresponding design problem with the trivial code.




It can be noted that the optimum found with the Cheby-
shev code (J) are very close from the ones provided
by the trivial codes (J*). Furthermore, even if for this
highly non linear problem we do not know how close (or
far) we are from a global optimum, we can clearly see
that, for a given M, the performance regularly increases
with the number of free parameters. But the main ad-
vantage of the compact representation, compared to the
trivial code, is that we can get good results for practi-
cally any value of M.

4 Design examples

At first, we present an example corresponding to a de-
sign with M = 2048, L = 16384. The Chebyshev code
is such that K = 5, i.e. only 45 free variables instead
of 9216 are used. In this example, depicted in Fig. 4,
the cutoff frequency is f. = 53 and the out-of-band
energy is equal to 2.52 x 1074,1.04 x 10~%,8.63 x 1075
respectively for s = 1,2, 3.
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Figure 4: Frequency representations of biorthogonal
prototype filters for M = 2048, L = 16384,s = 1,2,3
resulting from optimization of the out-of-band-energy
criterion with the Chebyshev code (K =5).

When using the time-frequency localization criterion,
it can be shown [10] that degenerated solutions can be
found that nearly attain the upper bound but, due to
their poor frequency behaviour, are useless in practice.
Such degeneracies can be controlled and, as shown in
[5], useful prototypes that are nearly optimal can be
obtained thanks to the compact representation. In ta-
ble 2 we present the results obtained for a filter bank
with 2048 subbands and prototype filters with differ-
ent lengths. The biorthogonal CMFBs are such that
D = 4095, which has to be compared to their orthogo-
nal counterparts which are also designed using a com-
pact representation approach [8] and have a delay given
by D=L -—1.

5 Conclusion

A fast design method has been proposed for biorthogo-
nal modulated filter banks which can provide biortho-

gonal prototypes being nearly optimal, with different
optimization criteria, and for practically any number of
subbands or subcarriers.
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Orthogonal Biorthogonal

17 7+ & 7+ &
4096 | 1.898 x 10~2 | 0.9057 | 1.898 x 10~ | 0.9057
8192 | 2.037 x 10~ | 0.9330 | 2.923 x 10=* | 0.9513
12288 | 3.182 x 10=% | 0.9763 | 1.370 x 10~2 | 0.9563
16384 | 8.634 x 107° | 0.9794 | 1.033 x 10~2 | 0.9564

Table 2: Best measures found with M = 2048 for the
out-of-band energy (J*) and localization (£*) criteria
for long biorthogonal (s = 0, D = 4095) and orthogonal
(D = L — 1) prototypes.



