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Abstract

We present a new QRD-based technique for optimal
multichannel filtering and its application to multi—
channel acoustic noise reduction. A recursively calcu-
lated adaptive filter optimally estimates the speech com-
ponent in a noisy signal. The complexity of this algo-
rithm is an order of magnitude than that of existing op-
timal filtering based algorithms which are mainly based
upon SVD—decompositions, while performance is kept
at the same level.

1 Introduction

In teleconferencing, hands—free telephony or voice con-
trolled systems, a microphone array may be used in-
stead of a single microphone in an attempt to reduce
unwanted disturbances (e.g. car noise, computer noise,
background speakers) based on spatio-temporal filter-
ing. A typical setup is shown schematically in Figure
1 for an array with 4 microphones. We aim at designing
an optimal filter which will use all available information
(e.g. reflections) in order to optimally reconstruct the
signal of interest.

In [1] [2] the optimal filtering problem was solved
by means of a GSVD (Generalised Singular Value
Decomposition)—approach. In this framework, a filter
which estimates the signal of interest from the micro-
phone signals can be chosen from a set of such filters
after computing the GSVD.

In this paper we will describe a QRD-based opti-
mal filtering approach to the problem. The QRD-
decomposition is already less complex than the SVD as
such, and one can make the selection of the filter that
will be calculated in advance, introducing an extra cost
reduction. The complexity of this algorithm is an or-
der of magnitude lower than that of existing optimal
filtering based algorithms which are based upon SVD-
decompositions, while performance is kept at the same
level.

The paper is organized as follows. In sections 2 and
3 we will introduce optimal filtering based noise reduc-
tion. Then we describe how noise reduction can be im-
plemented by means of QRD-based filtering in section 4.
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Figure 1: Adaptive optimal filtering in the acoustic noise
reduction context.

Then the complexity figures and the simulation results
are given in sections 5 and 6.

2 Optimal filtering based noise reduction

The speech component in the ¢’th microphone at time
kis d;(k) = hi(k) ®s(k) i=1...M, where M is the
number of microphones, s(k) is the speech signal and
h;(k) represents the room response path from the speech
source to microphone ¢. The i’th microphone signal is
zi(k) = di(k) +vi(k) i =1...M, where v;(k) is the
noise component (sum of the contributions of all noise
sources at microphone 7). We define the input vector
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The noise input vector v(k) and the desired signal vector
d(k) are defined in a similar way with x(k) = d(k) +
v(k). The following standard assumptions are made :

e The noise signal is uncorrelated with the speech
signal. This results in

e{xxT} = e{vv"} +e{cross terms} +e{dd"}
=0
= g{vwl} +e{ad"}
e{dd”"} = e{xxT}—e{wT}



Here €{-} is the expectation operator.

e The noise signal is stationary as compared to the
speech signal (by which we mean that its statistics
change slower). This assumption allows us to esti-
mate e{vv’} during periods in which only noise is
present.

We will use the speech component in one (or each) of
the microphone signals as the desired signal input of
the adaptive filter, i.e. d;(k) or d(k). This signal is
obviously unknown . We can then write the Wiener
solution for the optimal filtering problem with x the
filter input and d the (unknown) desired filter output
as

Wat = (e{xx"}) 'e{xd"} (1)
= (e{xxT})7'e{(d +v)d"}
= (efxx"})"'e{dd"}
= (efxx™P M e{xx"} —e{vwv'})

Here, e{xxT} is estimated from speech+noise-data,
while e{vvT} is estimated from noise-only data (dur-
ing speech pauses). This Wy is a matrix of which each
column is an optimal M N—taps filter estimating the cor-
responding component of d. One of these columns can
then be chosen (arbitrarily) to optimally estimate the
speech part in the corresponding entry of x'(k), i.e. fil-
ter out the noise in one specific microphone signal.

3 Data driven approach

A data—driven approach will be based on data matrices
X (k) and V(k), defined as

xT (k) vT(k
AoxT(k —1) AvT(k—1)
X(k)=| xxT(k-2) [VE)=| XvT(k-2)

We aim at tracking any changes in the environment
by introducing a weighting scheme in order to reduce
the impact of the contributions from the remote past.
Let A; denote the forgetting factor for the speech+noise
data, which can be different from A, , the forgetting fac-
tor for the noise only data. Since the noise is assumed
to be stationary as compared to the speech one could
choose 0 € Ay < A, < 1. We want X7 (k)X (k) to be
an estimate of e{x(k)xT (k)}. This is realised by

XT(k+1)X(k+1) =

NXT(R)X (k) + (1= 22)x(k+ 1D)xT(k+1)

The same goes for the noise correlation matrix estimate

VIik+1)V(k+1) = (2)

NVIE)WV(E) + (1 - )v(k+1)vE(k+1)

Using the QR-decomposition [3] X (k) = Q(k)R(k)
with Q(k) orthogonal and R(k) upper triangular, hence
RTR = XTX, the Wiener—solution is now estimated as

RT (k)R(k)W (k) = R” (k)R(k) — V" (k)V (k)
—_——

=P(k)

W(k)=I—-R Y (k)R™T(k)P(k)

Where I is the identity matrix. Due to the second as-
sumption (the noise being stationary), P(k) can be kept
fixed during speech + noise periods and updated dur-
ing noise only periods. RT (k)R(k) is fixed during noise
only periods and can be updated [3] during speech+noise
periods.

4 QRD-based realisation
Note that

=B(k)

defines a set of filters that optimally estimate the noise
components in the microphone signals. The only storage
required for the computation of W (k) or W (k) will be
the matrix R(k) € RMNXMN and for B(k) € RMN*MN
In fact, only one column of B(k) has to be stored and
updated, thus providing a signal or noise estimate for
the corresponding component of d. We will distinguish
between a “speech+noise” mode and an “noise-only”-
mode.

4.1 Speech+noise — mode

Whenever a signal segment is identified as a
speech+noise-segment, P(k) is not updated (second as-
sumption), but E{XT (k)X (k)} needs to be updated.
As we do not store X (k) but R(k) instead , the update
formula for R(k) is the standard QR—~updating formula

( R(k0+ 1) ) Q' (k+1) ( /\i%(@) )

(k) = /1 - X2x(k) (4)

@T(k + 1) is orthogonal, consisting of a series of ro-
tations over angles 8(k) and R(k + 1) is again upper
triangular!. Updating R(k) also implies a change in
B(k) = R™T(k)P(k). In order to derive this update, we
need an expression for the update of R~1(k). It is well
known [4] that

( BT (k4 1) ) =§T(’““)( %R—OT(k) )

Hence we have

(Bey ) =T+ )(;7§<k))

1Q(k) = Q(k)Q(k — 1)...Q(0) does not need to be stored.

with




The complete update can then be written as one single
matrix update equation :

0 )\ _
( Rk+1) B(k+1) ) = (5)
—T kE+1
@ ”“”( \R(K)  LB(k)

The updated least squares solution can now be com-
puted by backsubstitution, see formula 3.

4.2 Noise only—mode.

In the noise—only case, one needs to update B(k) =
R T(k)P(k) = R~T(k)VT(k)V(k), while R(k) is obvi-
ously kept fixed. Using equation (2), we define v(k) =
1 —A2v(k). From equation (2) and the fact that in
noise-only mode R(k + 1) = R(k), we find that

B(k+1)=XB(k)+ (R~ T(k+1)¥(k+1)¥T(k+1)})

Given R(k + 1), we can compute (R~T(k + 1)v(k + 1))
by a backsubstitution. By using an intermediate vector
u(k+1) : RT(k+ 1)u(k + 1) = ¥(k +1). The simple
multiplication u(k + 1)¥7 (k + 1) gives the update for
all columns of B(k + 1), B(k + 1) = A2B(k) + u(k +
1)¥vT(k +1). Again, the updated least squares solution
can be computed by backsubstitution.

4.3 Additional assumption

For multi—channel noise reduction, the forgetting factor
As should be chosen close enough to 1 for two reasons.
First, if the window is taken too short, the system of
equations which is solved by the RLS-algorithm will be-
come ill-conditioned because the input signal (which is
mostly speech) may not be persistantly exciting. Sec-
ond, by imposing a large window, one avoids that the
system performs a signal modelling, instead of modelling
the spatial characteristics of the desired signal.

It is found that better noise reduction results can be
obtained if we update R(k) also during noise-only mode
(with the same scheme as in section 4.1). For many
types of noise, A, can be chosen smaller (A, = 0.9997
for 8000 Hz sampling rate) so that convergence is very
fast. Experiments show that this approach delivers su-
perior results concerning noise reduction, although in
the beginning of a speech period, the signal sounds a
bit 'muffled’.

4.4 Residual extraction

It has been shown in [5] that for a QR—updating scheme
with a right hand side Z(k) and an update of this right
hand side with d(k + 1), i.e.

< 1 0 ) (xT(k-i—l) dT(k+1) ) _
0 Q(k) R(k) Z(k)

T
ot )26+ ( re’eny ke )

v

1
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one can write

| QUk+1)]

MN

d” (k+1)—xT(k+1)
S—— i—1
R—Y(k+1)Z(k+1)

(6)

Where 6;(k + 1) are the angles of all the rotations that
Q(k + 1) consists of. This means that we can extract
the least squares residuals without having to calculate
the filter coefficients W (k+1) first, which is remarkable.
From [5], (4) and (5) it can be shown that this can be
applied to our scheme too, since (d(k) = 0 and Z (k) =

B(k))

yEik+1)=0-XT(k+1)WN(E+1)y/1 - X2

The (speech) signal estimate during speech+noise—
periods is obtained by subtracting y,(k + 1) from the
input signal z(k 4+ 1). If we want to generate an output
signal in noise—only mode too, we can execute a residual
extraction procedure as in the speech-+noise-mode, be
it without updating the R(k) and B(k) (’frozen mode’).
This will of course increase the complexity in noise—only
mode, but since the updates need not to be calculated
(only the rotation parameters Q(k) and the outputs),
the extra complexity will be about half the complexity
in speech+noise-mode. The complexity in noise—only
mode will become roughly equal to the complexity in
speech+noise mode.

5 Complexity

The SVD-based optimal filtering approach has a com-
plexity of O(M3N?) where M is the number of micro-
phones and N is the number of filter taps per micro-
phone channel. A reduced complexity approximation
is possible for the GSVD-approach (based on SVD-
tracking), leading to O(27.5M?N?) [2] . These figures
can be compared to the complexity of this algorithm : in
noise-only mode, the complexity is (M N)2+3MN + M
flops per sample (if no output signal is generated dur-
ing noise periods). In speech+noise mode, the number
of flops per sample is 3.5(MN)2 + 15.5MN + M + 2.
In these calculations, one flop is one addition or one
multiplication. These figures apply when only one filter
output is calculated. For a typical setting of N = 20
and M = 5, we would obtain 36557 flops per sample for
the QR-based method as compared to 275000 flops per
sample for the GSVD-based method, which amounts to
a 7 to 8fold complexity reduction.

W(k+1) =r"(k+1) H cos6;(k+1)
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Figure 2: Performance comparison of GSVD-based op-
timal filtering (dotted) and QR-based optimal filtering
(full line) versus the original signal (upper signal in the
graph). The performance is roughly equal for both ap-
proaches.

6 Simulation results

Figure 2 compares the QRD-based optimal filtering
method to the GSVD-based optimal filtering method. It
shows that the performance of both methods is compa-
rable. Here the QRD—method does generate an output
when in ’noise only’-mode.

7 Algorithm description

In this algorithm, we choose only the first column z(k)
out of the matrix B(k) described above. It corresponds
to the autocorrelation vector of the first input chan-
nel. The newest sample received in this channel is called
u1 (k) in the algorithm description.

initialize R with unity matrix
loop (sample by sample):
form new input vector u
if (signal+noise)
wx= /1 2)
R-update(input=u, weighting=\;)
z-update (input=0, weighting=1/A,)
(use rotations from R-update)
(gives residual)
output (uq(k)+residual)/+/(1— A2)
else
wx= /TN
optionally update R(u, Az)
z(0, 1/A;)
(see section 4.3)
b=backsubstitution(RT, u)
z *x= \2
z += bruy (k)*/(1 - A7)

8 Conclusion

We have derived a new recursive algorithm for optimal
multichannel filtering with an unknown desired signal,
applied to adaptive acoustic noise suppression. Exper-
iments show that the performance is equal to similar
SVD-based optimal filtering algorithms from the liter-
ature, but that the complexity of the QRD—based opti-
mal filtering technique is significantly lower. If speech
statistics information is allowed to be ’forgotten’ during
noise-only periods, the noise suppresion performance
even increases drastically while the speech signal is not
too much distorted.
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