
IP Cores Integration in DSP System-on-Chip Designs

Philippe Coussy, Adel Baganne, Eric Martin

LESTER – Université de Bretagne Sud – BP 92116 - 56321 LORIENT Cedex, France
{firstname.lastname}@univ-ubs.fr

ABSTRACT
Successful integration of IP/VC blocks requires a set of view that
provides the appropriate information for each IP Block through
the design flow for an IP-integration system. In this paper, we
present a methodology of IP integration in a System-on a chip
(SOC) design, that exploits both IP designer and SOC integrator
constraints. First, we describe a method to extract and specify IP
functional and timing constraints (I/O sequence transfer
constraints) from the IP core. Second, we propose a modeling style
of the integration constraints and a technique for merging them
with IP constraints. This technique allows the specification and
design of an optimized IP interface unit required for IP-
Socketization. The synthesis output is synthesizable VHDL RT of
the interface, a detailed Bus-Functional model of the IP core
towards Cosimulation.

I. I NTRODUCTION
The complexity of modern embedded systems design requires
designers to leverage the reuse of both software and hardware modules.
Reuse is done at the chip level called cores, VC (Virtual Component)
or IP (intellectual Property) available in various forms ranging from
soft cores to hard cores [1]. These components represent functions of
specific domains like signal processing (DCT, FFT),
telecommunication (Viterbi, Turbo codes) multimedia application
(MPEG2, MPEG4, JPEG) etc. The IP core are integrated in a system-
on a chip (SOC) which a typical architecture is depicted in Fig. 1. Such
architecture includes digital signal processors (DSP), shared memory,
bus controller and a set of hardware IP blocs connected to the system
bus through specific interfaces or Wrappers. IP cores can be,
previously or not, created internally by the SOC designer team but can
also be bought from an external source. Despite efforts oriented on IP
core exchange and IP core catalog development ([1]), communication
problems and timing issues can cause SOC design to fail. A successful
IP core integration requires the designer to take into account the main
following tasks:

1. Synchronization: the components have to be synchronized on
different aspect such as global execution, data exchanges and
protocols.

2. Protocol conversion: Assure the protocol conversion between
blocks that use incompatible protocols. Wrapper can be used for
this purpose but introduce overhead that should be taken into
account with the timing constraints.

3. I/O buffer synthesis: data may be buffered to ensure the system
behavior and to meet timing constraints.

In practice, the vision of easy and quickly assembling a SOC using
cores has not yet become reality for many reasons. Actually, even if
cores are pre-verified, it does not mean the whole system will work
when they are put together. The integration of cores into a SOC is
widely a manual and error-prone process because it requires the
designers to fully understand the functionality and interfaces features
of complex cores. Besides the protection of the internal IP block
architecture can lead the designer to hide some information that may be
essential for the IP integration.
Different approaches attempt to ease IP integration today by defining
design methodologies or techniques to solve specific problems. Virtual

DCT

VCI
DSP

Bus
Arbiter

wrapper

Coder
Viterbi

interface

Codec
MPEG

Shared
memory

VCI

Fig. 1 A Typical SOC Architecture

Socket Interface Alliance (VSIA) [2] focussed on defining a standard
on-chip bus, but this soon appeared to be difficult [3]. In [4] authors
proposed an interface-based design methodology that attempts to ease
integration by separating the communication from the behavior. VSIA
[2] provides a Virtual Component Interface (VCI) standard that defines
a generic cycle-based address-mapped point-to-point communication
protocol. The use of this kind of standard interface can add
communication overhead [5]. Some EDA companies provide a set of
tools that allows incorporating IP cores for high level specification and
system cosimulation. Coware N2C provides a Virtual Bus [6] to
connect each system block and allows the HW/SW cosimulation at the
conceptual and architectural level. VCC (Virtual Component Co-
design) [7] proposed by Cadence is a system-level environment for
HW/SW co-design and IP reuse. This tool allows specifying the system
functionality, defining the system architecture, performing the
partitioning, refining communications between blocks and analyzing
system performances. However, such tools require the system designer
to have an efficient IP core modeling adapted for the co-simulation and
system-level performance analysis steps. Furthermore, they can not
manage low-level details relative to IP interface synthesis (computing
latency, I/O timing constraints etc.). Few works have addressed the
problem of IP integration and interface synthesis in a global way.
Some of them addressed the problem of interface synthesis between
standard components that have incompatible protocols [8]. In [9]
authors describe the problem of IP wrapper synthesis and overhead
delays to be considered for integration. Others addressed the problem
of interface synthesis from hardware I/O transfer sequences in a co-
design approach [10].

In our point of view a global methodology of integration, going
from the system level performance analysis down to the synthesis step,
is the best way to solve the problem of IP core reuse. In this paper we
present a methodology of IP integration that exploits both IP designer
and SOC integrator constraints. The paper is organized as follow: First
in section 2, we give the formulation of the IP integration problem. In
section 3, the proposed integration flow is presented. As illustration,
section 4 describes an integration example of an FFT core and the
synthesis results obtained.

II. PROBLEM FORMULATION
Let us consider a SOC architecture composed of an IP core and a
DSP(see Fig. 2). This IP core receives data X,Y,Z from the DSP and
sends its result W to the DSP over a single bus. Two functional units
compose the IP core: one memory management unit and one
processing unit that exchange data over two busses. All the data used

in the processing unit are read from the memory management unit in a
fixed order sequence SIP = (X,Y,Z) i.e. tx < ty < tz. The produced output
signal W is also stored in the memory management unit. The memory
management unit includes a fixed address generator. The order of the
data transfer sequences is therefore completely deterministic. Let us
consider the I/O sequence constraints imposed by the DSP to be the
sequence SSYS = (X,Z,Y). The produced result will be false because of
the wrong data sequence order presented to the IP core interface.

X Z Y IP memory
management

unit

IP core
processing

unit

X Y

DSP
W

Z W

IP Core

Fig. 2: IP core integration problem

Let us now consider the following DSP data transfer sequence S'SYS =
(X,Y,Z). If the timing requirements imposed by the IP core are not
respected the integration process will fail. Successful integration of IP
blocks requires a set of views that provides the appropriate information
for each IP block through the design flow of an IP-integration system.
Hence, a methodology of IP integration has to exploit both IP provider
and SOC integrator constraints. In our work, we consider the real time
implementations of computing intensive applications such as image
and signal processing. In our work, we consider the real time
implementations of computing intensive applications such as image
and signal processing. So, the functions processed by the IP cores are
supposed to be deterministic.

III. D ESIGN FLOW
An overview of our design methodology is described in Fig. 4. The
design flow concerns on the one hand IP design tasks and on the other
hand System design and integration tasks. The point of contact is done
by means of an IP Execution Requirements Model (IPERM) and an
IP Delay Model that describe low-level details for IP core integration.
These models should be provided by the IP designer and constitute a
key element of successful integration from the performance analysis
task to the synthesis step. As it will be seen in the next sections these
models offer to the IP designer an efficient protection of the internal
description by hiding architecture details while keeping clear the
description of the functionality requirements.

A. IP Design
The design of an IP core begins by a functional specification that
describes the behavior of the component. The IP core is then described
with hardware language more suitable for implementation. Usually, IP
core architecture is based on four main functional units:

- Processing Unit (PU) releases all the arithmetical operations
- Memory Management Unit (MMU) stores data during executions.
- Control Unit (CU) drives all the precedent described units
- Interface Unit (IU) manages and controls the communications

between internal architecture and external environment.
The functional units previously described can be designed by means of
manual RTL description or high-level (behavioral) synthesis tools such
as SystemC Compiler from Synopsys. Based on these descriptions, we
can extract the IPERM model for the IP integration. This design step is
discussed in the next section.

B. IPERM Model Generation
At this stage of the design flow, the functional units of the IP core are
described at the RTL level. The processing unit is modeled with a
Finite State Machine with Data-path (FSMD) model described in [8].
An FSMD differs from the FSM in that it may include variables with
various data types. This modeling of the processing unit will be named

MPU in the rest of the paper. The memory management unit is modeled
with a set of FSMD MMU ={M MU1,…, MMUi} where MMUi represent the
ith storage element with 1≤ i≤NIP and NIP represents the number of
busses that connect the processing unit to the memory management
unit. The memory management unit and the processing unit are
therefore modeled by a set of communicating FSMD.

The first step of the IPERM generation we merge the MMU states
with MPU states in order to obtain a single FSMD MIP. The second step
merges sequential MIP states without I/O data dependencies into a new
state called Super State (see Fig. 3). Thus this super state represents a
set of computations and memory accesses that are released between
two I/O data transfers.

First phase

1) For all the state in MPU

2) For each data dependency of the current state
3) Merge the data dependent MMU states with the current state

in a new MIP state
4) End for
5) End for
Second phase

6) While MIP state without I/O data dependency
7) For all the state in MIP

8) If (the next state has no I/O data dependency)
9) Merge it with the current state
10) End if
11) End for
12) End while

Fig. 3: Pseudo code of our IPERM design algorithm

Since the IP core is described at the RTL level and that all the PU I/O
transfer sequences are fully specified. Timing information can
therefore be extracted and added to the generated model of the IP core
such as data lifetime LT(d), input data latest arrival date and output data
earliest emission date TPU(d). The transfer delay due to the data
exchange protocol between the processing unit and the interface unit is
expressed by ∆ in cycles (Fig. 5).

The final IPERM model is an annotated FSMD:
- A set of super states output by states merging steps

- Timing frames where the data transfers can occur

Fig. 9 depicts the set of communicating FSMD that represents the IP
core described in section 2. The MMU is composed of two memories.
The PU reads X, Y in the first one reads Z and writes W in the second
one. The PU FSMD includes five states. Fig. 9, 10 respectively show
the result of the first and second phase.
Finally, the obtained IPERM Model MIP is composed of three super
states.

C. IP delay Model
Embedding intellectual property models into high-level system
description allows the system designer to simulate and evaluate
appropriate virtual components during the performance analysis phase.
For this purpose, the functional description of the IP core is associated
with a delay performance model that describes its timing requirements.
This enables the system designer to anticipate the synchronization
problems between the different components of the system and the IP
core. Taking care about the timing requirements of the IP core early in
the system design flow allows an optimized integration. The IP Delay
Model is generated from the IPERM model since it describes the
functional and timing requirements of the IP core. For instance, in [7]
IP core can be integrated at the system level for performance
simulation. For this purpose, the IP functional model is associated with
a DSL performance model using the Delay Script Language.

n

IP specification

IP D ESIGN

P rocessing
U n it

M em ory
M anag. U nit

M odel G eneration

F irst P hase

Second Phase

IP D esigner IP In tegrator

IP IN TEG R A TIO N

B FMD evice
driver

Interface
synthesis

IP m odels

p

System constraints

SW D ESIG NH W D ESIG N

o

System specification

IP C ore Selection

H W /SW Partitioning

A rchitecture E xploration

C o-sim ulation

Architectu re
m odels

IP E xecution
R equ irem ents

M odel
(IPE R M)

IP D elay
M odel su ited
for ED A tools

Fig. 4: Design Flow for IP integration

C. System Design and IP Integration
The system design begins by a specification capture of the desired
application. The system designer select IP cores from a database
considering constraints criteria e.g. speed, area, or power etc. Follows
an architecture exploration concurrently with a set of co-design
techniques [12] (HW/SW partitioning, system performance analysis,
communication synthesis HW,SW and interface generation). The
performance analysis task allows the designer to explore independent
dimensions of behavior and architecture to reach optimal design
performance within the given constraints. The hardware and software
design tasks generate respectively an RTL description of ASIC/FPGA
blocs and C/C++ code. To satisfy the integration constraints and to
carry out the IP-Socketization, the system designer can incorporate the
low-level details of IP provided by the IPERM model (Latency, I/O
sequence transfer, I/O timing constraints etc.).

1. Integration Constraints
Definition:
All the following parameters specify the communication features
between the system and the IP core.

- δa : probability of access to the communication medium when the
communication is done via a shared On-chip-bus

- δp : constant which depends on the used transfer protocol
- γw : overhead introduced by the bus wrapper
- δt : data transfer delay

Integration constraints can be of three major types: (1) fully specified
by precise dates of data transfer and data sequence order; (2) partially
specified (timing frame of data transfer and data sequence order or
partially or not ordered data transfer)- (3) Unspecified. These
constraints are specified for the Ns busses that connect the IP core to
the rest of the system. Each one is modeled with an FSMD that
describes the bus transactions. Hence the set MS ={M S1, …, MSi}
models integration constraints for each external bus: MSi represent the
ith bus with 1≤i≤NS. The dependencies set between the MIP and MS are
represented by a hierarchical links set. Each link can be decomposed in
two subsets: data links and control links. The control links hence
model a data exchange protocol as handshake for example. The timing
frame of a data associated to the hierarchical links take into account the
data transfer latency and the data exchange protocol delay between the
system and the interface unit of the IP core.
For each data the transfer delay between the system and the interface
unit (see Fig. 5) is expressed as δ = δa + δp + γw + δt. Fig. 11 depicts

δ

DSP

T
im

e

Interface IP Core

∆

∆

δ

I/O data buffering

DSP → IP transfer

IP → DSP transfer

IP call

Computation

Transfer delay

Fig. 5: Integration Constraints Specification

the constraints imposed to the IP core of our example. The DSP and
the IP core exchange data over a single bus modeled by the MS FSMD.
The overhead added by wrapper is currently not supported and is left
for future work.

2. IP Interface Synthesis
Merging integration constraints and IP constraints allows the design of
an optimized IP interface unit required for IP-Socketization. Each I/O
data is characterized by two timing frames: TIU that represents the
interval in which the transfer can occur; LT(d) that represents the data
lifetime in the interface unit. These information are generated by
merging: (1) IP functional and timing constraints provided by the
IPERM model (2) system integration constraints Ns and data transfer
sequences, (3) transfer delays ∆, δ. The generic interface unit targeted
by the synthesis is composed of buffers for storing I/O data and an
FSM based controller. The hardware synthesis step uses algorithm
working from timing requirements and data ordering information.
Interface hardware synthesis generates a synthesizable VHDL RT
description. A BFM [13] can be generated manually based on the
system bus specification. It is written in VHDL and will drive the
simulation with the core's bus response. A new IP delay model can be
generated at this stage taking into account the interface unit effects on
the timing constraints of the interfaced IP core. This is not supported in
the actual design flow and is left for future work.

IV. IP I NTEGRATION EXAMPLE : FFT CORE
The presented method has been applied to an IP core that implements
an 8-points complex FFT optimized on area. The system is composed
of one DSP and one IP core that communicate through a point to point

link (see Fig. 6). Real and imaginary parts are sent in parallel over one
data bus that connects the DSP and the FFT IP core.

S
IP Interface

Unit
FFT Core

S1 , S2

DSP

S3, S4

S=((x0, x2, x4, x6), (x1, x3, x5, x7), (s0, s1, s2, s3), (s4, s5, s6, s7))

S1=(x0 x2 x4 x6)

S2=(x1 x3 x5 x7)

S3=(s0 s1 s2 s3)

S4=(s4 s5 s6 s7)

Fig. 6: Integration Constraints of the FFT core

The memory management unit implements eight 16 bits width registers
containing the real and imaginary parts of the data each one coded with
8 bits. The PU exchanges data with the MMU over four 16 bits width
busses for intermediate results. The PU reads input data and writes
final results from or to the system on its I/O ports. The data are
exchanged serially between the DSP and the FFT core and in parallel
between the interface unit or the memory management unit and the
processing unit. A simple handshake enable protocol synchronize the
DSP and the FFT core (δp=1, δt=1). The processing unit and the
memory management unit are synchronous: the PU reads and writes
data on internal busses at fixed dates. Fig. 7 shows a piece of IP delay
model script of the FFT core written with the Delay Script Language.
DSL is a C-like language used in the VCC tool [7] to describe the DSL
Performance Model of hardware components. This IP delay model
associated with the system-level description of the FFT core can be
used for the performance analysis.

…
delay_model () {
input (ai); input(ar);input(bi);input(br); /*Read the inputs*/
run(); /*computing part*/
delay('9.0e-9'); /*Wait before posting output*/
output(wi);oupout(wr); /*Post the outputs*/
input (ai); input(ar);input(bi);input(br); /*Read the next inputs*/
…}

Fig. 7 : IP Delay Model of the FFT Core

Table 1 shows the parameters of the systems and the results output by
the interface synthesis. Fig. 8 depicts the synthesized interface that
allows the integration of the IP core into the system design.

Constraints Interface
MMU δp δt ∆ FSM Registers Mux Demux

16x16 bits
registers

1 1 1
11

states
4x16
bits

4→1 1→4

Table 1:Experiments parameters and Results

Controler
 (FSM)

IP

(FFT)DSP

Fig. 8: Interface Unit of the FFT example

The synthesized interface unit is optimized for the data sequence
transfers imposed by the DSP. One multiplexor and one demultiplexor
process respectively the parallel-serial and serial-parallel transfer mode
translation on the DSP side. Registers are directly connected to the
processing unit ports. This interface unit allows the integration of the
IP core into the system design.

V. CONCLUSION
In this paper we presented a design methodology of IP integration in a
SOC design that exploits both IP designer and SOC integrator
constraints. The integration task is based on the IPERM and IP delay
models that describe low-level details of the IP execution constraints.
These models can be deliverable since the internal features of the IP
core are hidden. We also presented a method for IP interface synthesis
that can be easily automated. As a future work, we plan to refine the
method by incorporating timing overhead added by bus wrapper, and
handling the stochastic nature of applications where predicable
behavior can not be guaranteed.

VI. REFERENCES
[1] Inventra, http://www.mentor.com/inventra/
[2] Virtual Socket Interface Alliance, http://www.vsi.org
[3] A. Cataldo, "VSI abandons plans for system-chip bus", EETimes,, 1997
[4] J.A. Rowson and A.L. Sangiovanni-Vincentelli, "Interface-Based Design",
in Proc. of DAC, June 9-13 1997
[5] R. L. Lysescky, F. Vahid, T. D. Givargis, "Techniques for reducing Read
Latency of Core Bus Wrapper ", in Proc. of DATE, March 2000
[6] K. Van Rompaey, D. Verkest, I. Bolsens, H. De Man, "CoWare A design
environment for heterogeneous hw/sw systems", in Proc of EURODAC, 1996.
[7] Cadence VCC 2001 http://www.cadence.com/ datasheets/vcc.html.
[8] R. Passerone, J.A. Rowson, A. Sangiovanni-Vincentelli, "Automatic
Synthesis of Interfaces between Incompatible Protocols", Proc. of DAC, 1998
[9] G. Cyr, G. Bois, M. Aboulhamid, "Synthesis of communication Interfaces
for SOC using VSIA recommendation", in Proc. of DATE, 2001
[10] A. Baganne, J-L. Philippe, E. Martin, "A Formal Technique For Hardware
Interface Design", in Proc of ISCAS, 1997
[11] D. Gajski, N. Dutt, A. Wu, S. Lin, "High-level synthesis Introduction to
Chip and System Design", Kluwer Academic Publishers, Boston, 1992.
[12] J. Staunstrup, W. Wolf :"Hardware/software Co-design Principles and
practice", Kluwer academic publishers 1997.
[13] M Keating, P Bricaud, "Reuse Methodology Manual for System-On-A-
Chip Designs" Kluwer Academic Publishers, Boston, 1998

w

x

S(a)

R(a)

•

MMU1

y

z

•

MMU2

init

*

+

/

+

•

MPU

10

20

30

35

25

4

t

x

y

z

w

init

* , S(a)

+

+

•

M IP

R(a), /

10

20

30

35

25

4

t w

x

y

z

Fig. 9: IP Core Modeling Fig. 10: 1st Phase Result

init

*, S(a)

+

•

M IP

+, R(a), /

x

z

•

M S

y

10

20

30

35

4

t

w

init

*, S(a)

+

•

M IP

+, R(a), /

10

20

30

35

4

t

x

y

z

w

Fig 11: System Constraints Fig 10: 2nd Phase Result

