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ABSTRACT

Most of lossy image compression methods like SPIHT
or JPEG2000 are based on determining the intervals
in which each coefficient can be reached. Once these
intervals are known, the decoder selects the value that
minimizes the mean square error of the possible values.
When a coefficient is not considered significant, because
its sign is not known, the selected reconstruction value
is zero. This ignorance of the sign for non significant
coefficients makes the interval of the possible values to
be twice as much the rest of the Wavelet coefficients.
In this paper an alternative for the selection of the re-
construction value for the non significant coefficients is
analyzed. It is based on predicting their actual values
using the neighbors’ values. With this new improve-
ment it has been possible to reach average reductions of
about 5 percent, being higher than reductions reached
by JPEG2000 over SPIHT.

1 Introduction

The JPEG committee has recently released its new im-
age coding standard, JPEG 2000 [1] [2], which will serve
as a supplement for the original JPEG standard intro-
duced in 1992. This new coding system achieves excel-
lent compression performance, somewhat higher (and, in
some cases, substantially higher) than SPIHT [3] with
arithmetic coding, a popular benchmark for comparison
purposes based on the EZW algorithm [4].

These three algorithms are based on the Wavelet
transform [5], The Wavelet coefficients are quantized
and entropy coded in order to form the output bit
stream. At the decoder, the bit stream is first entropy
decoded and dequantized. The result of these two op-
erations is a set of possible values for each coefficient.
So as to select the correct value from the possible ones,
trying to minimize the mean square error is usual. Once
the estimation of the coefficients is obtained, the inverse
transform is applied, thus resulting in the reconstructed
image data.

The quality loss is introduced on the quantization
step. Low coefficients are considered zero valued, ignor-
ing the sign of the coefficient in the quantization. So,

the interval of the possible values of these coefficients is
twice the rest of the Wavelet coefficients. The quality
loss introduced by this kind of coefficients is, therefore,
higher than the left ones.

We propose an alternative method for estimating the
reconstruction value for these non-significant coefficients
based on predicting their real values by their known val-
ued neighbors. On the next section, we will study the
statistical conditions of these values, building up from
the study of the sign. If we could determinate the sign
of these coefficients, it would be possible to choose the
value with more accuracy and the global quality of the
recovered image would be higher.

2 Estimation of the residual value of the non-
significant coefficients

This section is divided in two subsections. The first one
introduces the concepts necessaries to the understanding
of our improvement. And the second one explains our
alternative method.

2.1 Autocorrelation of the signs of the Wavelet
coefficients

The Wavelet decomposition is carried out by bidimen-
sional filtering and decimation. The spectrum is divided
in four areas. Repeating this process, we are selecting
the frequency areas, adjusting them to make the positive
valued frequencies embrace the whole spectrum. Ac-
cording to this, we are passing from a frequency domain
with some determinated characteristics in the original
image, to blocks of coefficients where each scale and ori-
entation possess some frequency characteristics that are
a portion of the original ones. This way there will be
soft shaped images producing scales with an important
component of high frequency.

On the other hand, at least a high pass filtering is
used for obtaining the different Wavelet coefficients. So,
the mean value of each an every orientation and scale
is zero. Putting together these two characteristics of
the Wavelet coefficients, we can conclude that statisti-
cal properties in each orientation and scale are different.
Therefore, this will produce correlations in the signs of
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the coefficients. Either to (a) have a high degree of high
frequencies and, therefore, a lot of probability of chang-
ing sign in adjacent coefficients, either to (b) have low
frequencies and low probability of a sing change. In ad-
dition, these properties will remain uniform for every
orientation and scale, being possible to find different
conditions on each direction. All this is demonstrated
by calculating the autocorrelation of the signs of the
Wavelet coefficient in each orientation and scale. Find-
ing out that, depending on the selected one, there are
high or low correlations, positive or negative for each
neighbor of the coefficient.

We can summarize, therefore, that the sign of a coeffi-
cient is correlated with the sign of its neighbors, so that
it is feasible to predict its sign with those around. When
we finish the image decoding, the result is a bunch of
coefficients (with a precision marked by the last thresh-
old), with a reconstruction value that minimizes the
mean square error, surrounded of a set of coefficients
that, not being able to know their sign, a reconstruction
value of zero and an interval of precision twice as much
as that of the rest of the coefficients are assumed. If
we could know the sign of these non-significant coeffi-
cients, a reconstruction value different from zero would
subsequently diminish the square error in a remarkable
way.

2.2 Obtaining the residual value estimation co-
efficients

We will take over the problem in the following way: once
finished the encoding we will look for the non-significant
coefficients, and we will select among them, those having
at least one significant neighbor. The neighbors to be
considered will be the eight adjacent coefficients in the
horizontal, vertical and diagonal directions.

As seen in the previous subsection, the statistical
properties of the signs are different for each orientation
and scale. We will consider the scales with 64x64 coeffi-
cients or more. For an image of 512x512 pixels, we have
three 256x256 coefficients groups for the first scale, three
128x128 coefficients groups and three 64x64 groups for
the third scale. We don’t consider bigger scales for the
gain in the usual compression rates for not being signif-
icant.

This way, we will focus on the analysis of a chosen
scale and orientation. For each group, we will have N
non significant coefficients with at least one significant
neighbor. xn will be the residual value of the n coeffi-
cient. The neighbors of xn are the adjacent eight ones
numbered from left to right and from top to bottom,
and si

n (i = 0 ...7, n = 0 ...N -1) are the sign of the i
neighbor of the n coefficient. si

n will be +1 for significant
and positive coefficients, -1 for significant and negative
ones and 0 for non-significant ones. To calculate the
prediction value of a non-significant coefficient, its eight
neighbors will be taken and multiplied by certain ai co-
efficients to obtain the normalized reconstruction value.

Then we only have left multiplying by the threshold to
obtain the estimation of actual value for the point. To
obtain the ai values, minimization of the mean square
error is carried out.

According to this, our approach to the problem should
be the following: Being en the derived error of the esti-
mation of the n coefficient, we can write:

en = xn −
7∑

i=0

si
n · ai · Un (1)

Where Un is the threshold reached by the coefficient
n. We must take into account that the algorithm can
be stopped at any given moment, so that some coeffi-
cients’ threshold shouldn’t necessary be the same one
than others’. This will be managed by the factor A.
Therefore, now we have a system of N equations with
eight variables that will be solved by the least square
method. Thus, the square error will be the following:

N−1∑
n=0

en =
N−1∑
n=0

(xn −
7∑

i=0

si
n · ai · Un)2 (2)

In order to find the values ai that minimize this ex-
pression, we should carry out the partial derivative re-
garding each ai. This way we will obtain a system of
eight equations with eight variables to be solved.Taking
the partial derivative of the previous expression regard-
ing to aj , j equations are obtained:

∂
∑N−1

n=0 en

∂aj
=

N−1∑
n=0

2·(xn−
7∑

i=0

si
n·ai·Un)·sj

n·Un = 0 (3)

N−1∑
n=0

xn · sj
n · Un =

N−1∑
n=0

7∑
i=0

si
n · ai · U2

n · sj
n (4)

Now we consider A as T · Vn, where Vn is worth 1 or
2, depending whether this coefficient has already been
tested in the current algorithm loop or not, and T will
be the last obtained threshold. Inverting the order of
the sums and re-arranging the expression we obtain ex-
pression (5):

1
T

·
N−1∑
n=0

xn · sj
n · Vn =

7∑
i=0

ai ·
N−1∑
n=0

si
n · V 2

n · sj
n (5)

Naming Si
n the product si

n · Vn, we obtain:

1
T

·
N−1∑
n=0

xn · Sj
n =

7∑
i=0

ai ·
N−1∑
n=0

Si
n · Sj

n (6)

If Rij =
∑N−1

n=0 Si
n ·Sj

n and writing the eight resulting
lineal equations in a matrix form:
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 R00 R01 . . .
R10 R11 . . .
...

...
. . .

 ·

 a0

a1

...

 =
1

T
·


∑N−1

n=0 xn · S0
n∑N−1

n=0 xn · S1
n

...


(7)

Once coding is concluded, the inverse of the matrix
¯̄R and the vector in the right side of equation (7) is
calculated, and multiplied in order to obtain the vec-
tor Ā. These eight coefficients are always smaller than
unity, and they will be coded using a floating point rep-
resentation and sent them to the receiver. So, once
the decoding is concluded, they will be read from the
file, and each scale and orientation non significant coef-
ficients will be tested looking for those having significant
neighbors. The reconstruction value for each non signif-
icant coefficient will be:

x̂n = T ·
7∑

i=0

si
n · ai · Vn (8)

To code the coefficients, a structure of one byte has
been used, where the first bit represents the sign of the
element, next three bits the exponent and last five bits
the mantissa. We must take into account that the inclu-
sion of these coefficients must be considered in coding,
being 8 · 8 · 3 · 3 = 576 bits added at the end of the
process.

3 Results

In table 1 we have the gain represented for different
compression rates using the image Lenna, for each scale
and orientation. Gain is expressed maintaining the same
compression rate, therefore negative values may appear.
So as to calculate the compression gain, an estimation
of the slope of the bpp-PSNR curve has been made, so
that it has been possible to change increments in PSNR
to increments in bpp.

In tables 2 and 3 reduction and gain achieved with
the application of this approach to different images are
shown. As we can see, the gain is not stable for all rates;
it is centered on certain values of PSNR. On the other
hand, as this values of PSNR are usual, we find out a
method that gives out some very good results (up to 7%
in some cases). On the other hand, another conclusion
is that the variations are quite abrupt. To achieve the
maximum gain with this method, the best option is to
stop the coding at the changes of bit plane. According
to this method, we can reach higher gains.

This is shown in table 4, where we can see the best
reduction values for the working images. This time it
is a real reduction, since we targeted that no matter
what number of bits are used, image quality is exactly
the same for both algorithms. As we can see, the re-
sults reached by the method begin to be comparable to

Bit plane 5 Bit plane 4 Bit plane 3

Scale 0 Hor. 0,001 dB 0,031 dB 0,037 dB

Scale 0 Dia. -0,006 dB 0,004 dB 0,015 dB

Scale 0 Ver. 0,066 dB 0,071 dB 0,036 dB

Scale 1 Hor. 0,024 dB 0,016 dB 0,004 dB

Scale 1 Dia. 0,004 dB -0,001 dB 0,000 dB

Scale 1 Ver. 0,011 dB 0,011 dB 0,004 dB

Scale 2 Hor. 0,005 dB 0,004 dB 0,000 dB

Scale 2 Dia. 0,002 dB -0,001 dB 0,001 dB

Scale 2 Ver. 0,013 dB 0,000 dB 0,000 dB

Total 0,118 dB 0,136 dB 0,098 dB

Reduction (%) 2,712% 3,146% 1,867%

Table 1: Gain for each scale and orientation using the
image ”lenna” 512x512 (dB)

Bpp Barbara Finger Goldhill Lenna Peppers

0,1 2,5% 0,5% 1,1% 0,3% 0,5%

0,2 1,3% 2,4% 3,8% 1,4% 1,4%

0,5 1,7% 2,3% 2,8% 1,1% 6,2%

1,0 1,5% 5,3% 1,6% 0,3% 2,8%

Table 2: Reduction for different images using different
rates (%)

Bpp Barbara Finger Goldhill Lenna Peppers

0,1 0,072 0,014 0,032 0,014 0,017

0,2 0,050 0,094 0,125 0,065 0,031

0,5 0,114 0,116 0,130 0,051 0,154

0,75 0,247 0,126 0,066 0,064 0,134

1,0 0,121 0,368 0,098 0,014 0,188

Table 3: Gain in PSNR for different images using dif-
ferent rates (dB)
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low Barb. Finger Goldh. Lenna Peppers

Rate (bpp) 0,144 0,510 0,081 0,078 0,070

PSNR (dB) 26,34 28,01 27,53 29,37 28,83

Reduction 6,42% 2,89% 3,17% 0,52% 1,10%

medium Barb. Finger Goldh. Lenna Peppers

Rate (bpp) 0,669 1,054 0,527 0,168 0,401

PSNR (dB) 34,82 32,33 33,68 32,64 33,27

Reduction 4,47% 6,83% 3,67% 2,98% 7,15%

high Barb. Finger Goldh. Lenna Peppers

Rate (bpp) 1,162 1,934 1,164 0,341 1,153

PSNR (dB) 39,20 37,59 37,87 35,81 37,53

Reduction 2,25% 3,69% 2,44% 3,38% 6,65%

Table 4: Best cases for different images using different
rates in low, medium and high quality

those achieved by Said and Pearlman with their algo-
rithm SPIHT over the one proposed by Shapiro (about
20%). In addition to that, the best results are gotten
in the most commonly used areas in image compression
(between 30 and 40 dB).

Besides, when comparing two images recovered with
different methods, we can notice that they are differ-
ent, although having the same quality. When imple-
menting the prediction, we alter many values that are
distributed by the first three scales and, therefore, we
modify the high frequencies in most of the image shap-
ing out most of the hardest contours. In the original
method, however, symbols have been taken out until
reaching the same quality, which means modifying the
value of a small number of coefficients, but in a signif-
icant way. In other words, it adjusts some areas of the
image neglecting others.

4 Conclusions

The objective of this paper is the search of possible im-
provements to the well known last generation image cod-
ing standards. Throughout our work we have tried to
explain the statistical properties of the residual values.
We have proposed a new alternative for determining the
values of the wavelet coefficients at the decoder.

Using prediction schemes we have obtained higher
rate reductions. But the correct way for understand-
ing these results is to compare them with those reached
by JPEG 2000. The gain of JPEG 2000 over SPIHT

is 0,05 dB with Lenna. With our approach, gain over
SPIHT with Lenna is 0,06 dB, which is about the same
amount.

The coding gain is not related to the coding scheme,
so similar quality improvements should be obtained ap-
plying our approach to the JPEG 2000 standard.
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