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Abstract

A great number of blind deconvolution methods have
been presented in the litterature. In seismic prospecting
the observed signal results from the convolution of the
ground response by the wavelet due to the emitter and
to the wave propagation. The wavelet is generally not
known. In order to recover the ground response it is
necessary to apply a blind deconvolution.

Using higher order statistics (HOS) blind deconvo-
lution methods, we develop two deconvolution schemes
taking into account the specificity of the data collected
in seismic prospecting. We introduce new tools in or-
der to deal with the finite lenght of the data and to
correct the time delay non-observable in blind deconvo-
lution. The potentialities of these new algorithms are
illustrated on experimental data.

1 Introduction

In reflection seismic prospecting the emitter and the re-
ceiver are located on the ground made of several rock
layers. The down-going emitted wave is reflected at
each layer, giving rise to up-going waves which are regis-
tered by the receiver (figure 1). In this simplified model,
w(n) being the emitted wave (wavelet), the received sig-
nal, called the trace, 1s

t(n) = riw(n — ki) + b(n),
where 7; is the reflection coefficient of the ith layer, k;
the time delay of propagation and &(n) the noise. This
relation can be written

t=rxw-+b

where r(n) = >, r;d(n — k;) is the impulse response of
the ground.

The first objective of seismic processing is to recover
the ground impulse response in order to evaluate the
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Figure 1: Seimic reflexion

deepness and the position of the different layers. This
can be done by deconvolution. If the wavelet is known,
the deconvolution is made using a Wiener filter. Usually
the wavelet 1s not known, then a blind deconvolution
must be applied.

After a presentation of the methods of blind decon-
volution, we develop two approaches of seismic decon-
volution. In these methods, two key points are to be
solved. In seismic context the available data are of lim-
ited duration leading to important estimation errors.
We introduce procedures allowing to minimise the es-
timation errors. Another limitation is due to the fact
that, in deconvolution, the output is given with an ar-
bitrary time delay. This is a major limitation in seismic
prospecting where the time location of the echos is an
essential parameter to localise the layers. We discuss
this delay incertainty and propose solutions to correct
time delays. Finally two global procedures developped
are illustrated on experimental data.

2 Blind deconvolution
The basic hypothesis used in deconvolution is the white-

ness of the ground impulse reponse r(n). So, the sam-
ples of r(n), are statistically independent variables.



With this whiteness hypothesis the blind deconvolution
can be carried out if the r(n) samples are not gaussian
[2].

The whiteness of #(n) is used in second order whiten-
ing methods. This whitening, using Wiener filters,
cannot achieve the deconvolution if the phasis of the
wavelet is not known. In order to deconvolve, we have
to use higher order statistics. Three classes of blind
deconvolution methods have be developped:

e in the KARM A method proposed by [5] and used
in seismic processing by [1] the ARM A wavelet is
identified, by zeros and poles, using the second-
order Yule-Walker method. Then the zeros and
poles locations, limited to the initial ones or to
their inverse relative to the unit circle in the com-
plex plane, are determined in maximising a higher
order criteria. In the K ARM A method, the crite-
ria used is the kurtosis of the output r(n)
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Trying to apply this method to seismic data, we
have experienced that it is very difficult to deter-
mine the right number of poles and zeros. So, we
do not recommand to use this strategy.

r

e methods using the multispectra have been pro-
posed and used in seismic deconvolution [6]. In
these methods we point out the two steps ones

— in the first step a second order whitening is
applied using a null phase Wiener filter. This
filter is estimated with the spectrum of the
trace.

— in the second step the wavelet phase, ¢(m), is
recovered using the phase of the bispectrum
of the whitened trace, ¥(my, m2), by [4]

6() = 5 32 Wlmy,my),

N beeing the length of the DF'T used in bis-
pectral estimation.

e the M AMYV method has been proposed by [7]. In
this method it is supposed that the inverse filter
has an M A(2p+1) model which can be non-causal.
The criterium used to estimate the M A, 2p+ 1 co-
efficients, is the maximum likelihhood. The max-
imisation of the likelihood leads to

Co=w

where w is the column vector of the inverse filter
coefficients. The matrix €' is made with the val-
ues of a “higher order” correlation of the output

r(n)

where ®(u) = irEZ;, given by the probability dis-
tribution of the output samples p,, is the score.

3 The data

The data set recorded is a collection of 101 traces got
on an array of sensors regularly disposed on a straigh
line on the ground. The traces are given on figure 2 in
function of the horizontal position of the sensors (offset)
and of the time of arrival. The time coordinate is pro-
portionnal, through the wave velocity, to the deepness.
Using an usual method of presentation in seismic the
positive greater hoops of the time plot are blacken in
order to draw black lines that visualise the layer bound-
aries. On the data set shown on figure 2, we see a black
pattern near the sample 20 and an oscillating black pat-
terns near the sample 100. The upper pattern, made of
a well identified wavelet, has been used to ajust the time
delays between the traces. The two patterns show mul-
tiple blacken values of the signal which are due to the
oscillating character of the wavelet. In order to be more
precise in time (deepness) localisation we must null, or
attenued strongly, these oscillations by deconvolution.

4 Bispectral deconvolution

The bispectral deconvolution is done in two steps: sec-
ond order whitening with the estimated spectrum and
phase correction by the estimated bispectrum.

4.1 Spectrum and bispectrum estima-
tion

One trace does not contains enough ”independents”
events in order to estimate correctly the spectrum
and the bispectrum : an estimation strategy must be
adopted to get valuable estimators. One can postulate
that the wavelet is stationary on the whole data set and
then use all the traces. We suppose that the stationar-
ity of the wavelet is local : neighbour traces have quite
identical wavelet but, from the variations of the prop-
agation conditions, the wavelet can change slowly with
the location. In order to use this “local stationarity”



Figure 2: The initial data

we estimate the spectrum and the bispectrum on sub-
arrays made of 2/ + 1 traces surrounding the processed
trace.

We estimate the spectrum by the DFT of an es-
timator of the correlation function given by the sub-
array. With the estimated spectra, Si(m), we whiten
the traces in the frequency domain by the Wiener filter
of null phase whose complex gain is 1/(.S1(m) + ¢)(1/2),
€ 1s a regularisation factor taking into account the effect
of noise (supposed white).

From the whitened data set, we estimate the bis-
pectrum. The bispectrum estimation is done by the
averaged biperiodogram method [3]. In this method we
have to cut the sub-array data in short segments before
averaging on these segments. Using short data lenght
the cutting out of the data 1s very sensitive to the posi-
tion of the segments. So the results are not so stable :
some time good, other time bad. In order to get stable
results; 1t is necessary to state a strategy for the deter-
mination of the segments positions. We use the kurtosis
in order to select the best cutting way. We try all the
possible cutting positions and retain the position that
maximises the kurtosis of the output.

In order to illustrate the importance of this ”syn-
chronisation” we show on figure 4 the variations of the
kurtosis versus the segment position. In this example
the maximal value of the kurtosis is 30 and the mini-
mal one 6 showing the large domain of variation of the
quality of the estimation.

Another important parameter is the arbitrary time
delay introduced by deconvolution. In the frequency
domain this delay is the linear part of the phase vari-

Figure 3: The data after bispectral deconvolution
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Figure 4: Variation of the kurtosis of the output with
segments location

ation with frequency. A linear phase variation is not
controled by the bispectrum phase. In order to avoid
the parasistic delays after the phase identification, we
make a linear regression, versus frequency, on the phase
and subtract the linear term.

4.2 Results

The whole data set after bispectral deconvolution is
shown on figure 3. The spectrum and bispectrum are
estimated using sub-arrays of 9 traces. It is apparent
that the first pattern (near sample 20) is been com-
pressed, by attenuation of the multiple maxima due to
the oscillations of the wavelet. The same comment can
be done on the second pattern near sample 100. The
mutiple positive mounts and negative valleys have been
concentrated into a dominant watershed that represents
the structure of the limit between two rock layers.



Figure 5: The data after M AMV deconvolution
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Figure 6: Organigram of M AMV deconvolution

5 MAMYV deconvolution

In MAMYV deconvolution the impulse response of the
inverse filter is obtained iteratively. w; being the filter
vector at the iteration j
Wiy = wy+ plw; — Oy cwy),

where g 1s a constant determining the convergence
speed and Qq> i the higher order correlation matrix of
the output obtained at the iteration J-

We use, as higher order correlation, a line of the tri-
correlation. At the delay &

3 2

Ca (k) = B[ ) (n — k)] = 3BT (n)s(n — B)

As in the bispectral method, the tricorrelation is es-
timated on a sub-array of 2] 4 1 traces surrounging the
trace processed. In order to control the convergence of
the iterations, we use the kurtosis of the output as cri-
terium. We stop the iteration when the kurtosis reaches
a maximum value.

The organigram of the M AMV method is given on
figure 6

5.1 Results

The data set deconvolved by the M AMV method using
a non-causal M A filter of lenght 33 is given on figure 5.
As in the bispectral algorithm the boundaries between
the rock layers are more well definite as in the initial
data set.

6 Conclusion and perspectives

We have presented an application of deconvolution on
experimental data. We have shown that, in order to
get usefull algorithms, a processing strategy has to be
stated in order to get good estimators of the spectral
or correlation characteristics of the observed signal. A
particular care must be taken to the time localisation
of the outputs.

The presented results use a linear array of data. We
have to extend this procedure to surfasic arrays, ex-
tended on a rectangle, that are now used giving cubes
of data (3D data set). We have also to combine these
technics with the wave separation schemes using cubes
of vectorial data.

Thanks We thanks Ph. Julien from TotalFinaEIlf
that has kindly transmitted the seismic data set used
in the experimental study.
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