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ABSTRACT

This paper presents a new method for parameter
estimation of autoregressive (AR) signals from colored
noise-corrupted observations using a damped sinusoidal

model of the autocorrelation function of the noise-free
AR signal. Unlike conventional correlation-based
techniques, the proposed scheme �rst estimates the
damped sinusoidal model parameters from the given
noisy observations using a least-squares (LS) based
method. The AR parameters are then directly obtained
from the sinusoidal model parameters. Simulation
results show that the proposed method performs better
at low SNRs as compared to other existing methods.

1 INTRODUCTION

Parameter estimation of stochastic signal model is an
important issue in various �elds of science and engi-
neering, e.g., econometrics, geophysics, speech process-
ing, image processing, biomedical signal processing, and
communication [1], [2]. The most popular stochastic sig-
nal model is the Gaussian, minimum phase, AR model.
In time series analysis and signal modeling, both noise-
free and noisy autoregressive (AR) systems have been
extensively studied by many researchers [3]-[5]. In the
latter case, except very few exceptions for colored noise,
research results mostly considered white additive noise.
Zhang and Takeda in [6] proposed a method for pa-

rameter estimation of ARMA systems corrupted by col-
ored noise. In that work, a generalized least-squares
(GLS) method was suggested for estimating the AR pa-
rameters using short and noisy data. Although it was
claimed that the estimates converge to the true values
within a few iterations, it was shown in [7] that they ac-
tually remain unchanged after the �rst iteration. Fur-
thermore, the GLS method has limitations for certain
AR systems and cannot be used to estimate the AR
parameters, especially when the poles of the AR sys-
tem lie relatively inside the unit circle and the noise
is relatively strong, i.e., SNR is low. To alleviate this
problem, a maximum likelihood method for identifying
AR systems has been reported in [7]. The algorithm

however utilizes a bootstrap technique where the initial
values are obtained from the GLS method. The method
is highly dependent on initial values and may fail to
converge at a low SNR.
Recently, Zheng [8] has extended the improved least-

squares (ILS) type method to the parameter estimation
of AR processes corrupted by colored noise. Poor es-
timate of the initial values by the least-squares (LS)
method impedes convergence of the iterative scheme
particularly at low SNRs.
In this paper, we introduce a new AR parameter

estimation scheme via damped sinusoidal modeling of
the autocorrelation function of the noise-free AR signal.
The model parameters, leading to AR parameters, are
estimated from colored-noise corrupted observations by
using a LS type algorithm.

2 PROBLEM FORMULATION

The input-output relationship of a p-th order AR pro-
cess can be expressed by the di�erence equation as

A(z)x(n) = u(n) (1)

where the unknown input u(n) is a sequence of zero-
mean white Gaussian noise with unknown variance �2u,
x(n) denotes the output signal, and A(z) = 1+a1z

�1+
a2z

�2+� � �+apz
�p. Here, z�1 is the unit delay operator,

i.e., z�1x(n) = x(n� 1) and ak (k = 1; 2; � � � ; p) are the
unknown AR parameters. The order p of the AR system
is assumed to be known.
In many practical situations, observation noise cor-

rupts the data samples. In this work, we assume that
the output signal x(n) contains additive colored noise.
Then the observed process y(n) can be expressed as

y(n) = x(n) + w(n) (2)

The additive colored noise w(n) originates from an MA
process given by

w(n) = B(z)v(n) (3)

where v(n) is a zero-mean white Gaussian noise with
unknown variance �2v and B(z) = 1 + b1z

�1 + b2z
�2 +



� � � + bqbz
�qb . We consider that the colored noise w(n)

is �nitely autocorrelated, i.e.,

Rww(k) � E[w(n)w(n � k)] = 0; for jkj � L (4)

where E[�] represents the expectation operator and L is
a given positive integer. Moreover, v(n) is statistically
independent of u(n), i.e., E[v(n)u(n� t)] = 0 for all t.
The objective of this paper is to propose a novel

method using a damped sinusoidal model for autocor-
relation function of the noise-free signal to estimate the
AR parameters. The damped sinusoidal model parame-
ters are estimated using Ryy(m), calculated from a �nite
set of noisy observations. The desired AR parameters
fakg are then directly obtained from this model param-
eters.

3 AR PARAMETER ESTIMATION USING

DAMPED SINUSOIDAL MODEL

The transfer function of a p-th order AR system in the
z-domain can be expressed as

H(z) =
1

A(z)
=

pX
k=1

Ck

1� zkz�1
(5)

where zk denotes the k-th pole of the AR system and
Ck is the partial fraction coeÆcient corresponding to the
k-th pole. The unit impulse response h(n) of the causal
AR system described in Eq. (5) can be expressed as

h(n) =

pX
k=1

Ck(zk)
n (6)

If this AR system is excited by a white noise sequence
u(n), the response xM (n) is given by

xM (n) = u(n) � h(n) =

nX
l=0

u(l)h(n� l) (7)

Using Eq. (6), Eq. (7) can be written as

xM (n) =

pX
k=1

nX
l=0

Cku(l)(zk)
n�l (8)

Clearly, x(n) and xM (n) are the same because Eq. (1) is
the di�erence equation implementation of input-output
using the system parameters and Eq. (8) is the convolu-
tion sum implementation of the same using the system
roots. Using Eq. (8), the autocorrelation of the noise-
free signal xM (n) can be obtained as

RM
xx(m) = Rxx(m) =

pX
k=1

�k(zk)
m (9)

where

�k = �2u

2
4 C2

k

1� z2k
+

pX
q=1;q 6=k

CkCq

1� zkzq

3
5 (10)

The coeÆcient �k may be real or complex depending
on whether the pole is real or complex. Since x(n) is
real, in the latter case, a complex pole will always be
accompanied by its complex conjugate pole. Consider-
ing the e�ect of complex and real poles, Eq. (9) can be
simpli�ed as

Rxx(m) =

gX
j=1

(rj)
m
[Pj cos(!jm) +Qj sin(!jm)] (11)

where g = fnumber of complex conjugate pair of poles
+ number of real polesg, rj is the magnitude of the j-
th pole and Pj and Qj are constants. In general, rj
governs the decay rate of the AR system response and
!j determines the angular position of the pole of the AR
system in the z-plane.
We estimate each of the damped sinusoidal function

of the alternative representation of Rxx(m) described
in Eq. (11) in an iterative fashion. At �rst from the
given set of noisy data points y(n), the autocorrelation
function of the noisy signal, Ryy(m), is calculated as

Ryy(m) =
1

N

N�1�jmjX
n=0

y(n)y(n�m) (12)

It is suÆcient to consider only a few nonzero
positive lags of Ryy(m), where m = L;L +
1; � � � ; L + M � 1. The component function
f(rj)

m [Pj cos(!jm) +Qj sin(!jm)]g in Eq. (11) is then
estimated by best �tting a �nite sequence of this func-
tion with Ryy(m) for L � m � L +M � 1. The �tted
parameters at the �rst step will give an estimate of rj
and !j , j = 1. The corresponding �tted function is
then subtracted from Ryy(m) to obtain the �rst residue
function <1(m). In the second step, another function of
the proposed model is �tted to this residue function to
get the second set of rj and !j , j = 2. Then a second
residue function <2(m) is calculated by subtracting the
second �tted function from the �rst residue function.
The k-th residue function is thus de�ned as

<k(m) =

�
Ryy(m); k = 0
<k�1(m)� (rk)

mTk(m); k = 1; 2; � � � ; g0

(13)

where Tk(m) = Pk cos(!km) + Qk sin(!km) and g0 =
g � 1. For 0 < !k < �, we obtain rke

(�j!k) as one pair
of complex conjugate poles of the AR system. However,
!k = 0 or � represent a real pole given by rk or �rk, re-
spectively. Proceeding this way when all the p poles are
identi�ed no further steps are required. As for example,
in case of a fourth order system with two real poles and
a pair of complex-conjugate poles we need three steps.
Once the poles are estimated, the AR system parame-
ters can be obtained from their unique relationship [5].
In the proposed method, the parameters !k, rk , Pk,

and Qk of the k-th component function are chosen such



that the sum-squared error, between the (k � 1)-th
residue function and the k-th component function, de-
�ned by

J
(i)
k =

X
m

���<k�1(m)� (r
(i)
k )mT

(i)
k (m)

���2 ; k = 1; 2; � � � ; g0

m = L;L+ 1; � � � ; L+M � 1 (14)

is minimized, where T
(i)
k (m) = P

(i)
k cos(!

(i)
k m) +

Q
(i)
k sin(!

(i)
k m). Since the proposed method is iterative,

the superscript `(i)' denotes the iteration index, i.e., !
(i)
k

denotes the angle of the k-th pole at iteration i. The op-

timum parameters are found as Pk = P
(i)
k , Qk = Q

(i)
k ,

rk = r
(i)
k , and !k = !

(i)
k for the value of i at which

J
(i)
k is minimum. For arbitrary values of r

(i)
k and !

(i)
k ,

P
(i)
k and Q

(i)
k can be obtained by minimizing J

(i)
k in the

least-squares sense as

DU = V (15)

where the elements of (2 � 2) matrix D are de-

�ned by D11 =
P

m(r
(i)
k )2m cos2(!

(i)
k m), D22 =P

m(r
(i)
k )2m sin2(!

(i)
k m), D12 = D21 =

P
m(r

(i)
k )2m

cos(!
(i)
k m) sin(!

(i)
k m), UT =

h
P
(i)
k Q

(i)
k

i
, and VT =

[V1 V2] with V1 =
P

m<k�1(m)(r
(i)
k )m cos(!

(i)
k m), and

V2 =
P

m<k�1(m)(r
(i)
k )m sin(!

(i)
k m).

4 RESULTS

In this section, we examine and compare the perfor-
mance of the proposed method with that of reported in
[8] using two numerical examples. First, the noisy se-
quence y(n) = x(n)+w(n) is generated using the AR(3)
process and noise model expressed by

x(n) = 2:299x(n� 1)� 2:1262x(n� 2)

+0:7604x(n� 3) + u(n) (16)

w(n) = v(n)� v(n� 1) + 0:2v(n� 2) (17)

The variance of the input signal is �xed at �2u = 1 and
the variance �2v of the noise process v(n) is selected to
give di�erent SNRs de�ned as

SNR = 10 log10

NX
n=1

x2(n)

NX
n=1

w2(n)

dB (18)

In all the simulationsN = 4000 data samples from noisy
observations were used. For determining the damped

sinusoidal model parameters we have used Ryy(m) for
m = L;L + 1; L + 2; � � � ; L + M � 1. In simulations
M = 10p was used, where p is the AR system order and
L is chosen to be equal to p as also assumed in [8].

In order to estimate ! and r, a domain of ! from 0 to
� was scanned at a resolution of 5 � 10�3 for di�erent
values of r. Scanning interval of r was taken to be 0 to
1 and scanning resolutions were chosen to be 1� 10�3.
The estimated AR parameters using the proposed

method and ILS-CN method reported in [8] are pre-
sented in Table 1 for di�erent SNRs. The entries denote
arithmetic means and standard deviations of the esti-
mated a1, a2, and a3 based on 10 independent runs.
As can be seen, the accuracy of estimation of both the
methods are comparable at SNR=10 dB and SNR=5
dB. But at SNR=0 dB, the ILS-CN method completely
fails to estimate the AR parameters while no noticeable
deterioration in performance of the proposed method is
observed. Also the standard deviations of estimation
using the proposed method are signi�cantly lower than
the ILS-CN method demonstrating better consistency
of the proposed scheme.
Next, consider the AR(4) process given by

x(n) = 1:0427x(n� 1) + 0:1871x(n� 2)

�0:9704x(n� 3) + 0:6177x(n� 4) + u(n) (19)

The noise model is assumed to be the same as in Eq.
(17). Fig. 1 depicts the true and estimated average
roots of the AR system at SNR=0 dB calculated from
10 independent runs. It is evident from this �gure that
the ILS-CN method completely fails to identify the AR
system. Moreover, the solution is unstable. On the con-
trary, the proposed method estimates the AR system
roots quite accurately. Notice that the solution obtained
using the proposed method is always guaranteed to be
stable. This is because the search space of r, the mag-
nitude of a root, is 0 to 1. It was also observed that
at a relatively low SNR, the ILS-CN method faces non-
convergence problem and there was an average of 3 
op
tests out of 10 simulations. For non-convergence within
2500 iterations was considered a `
op test'.
Finally, to illustrate the e�ect of reducing the SNR on

the performances of the proposed and ILS-CN methods,
we calculate the normalized error, NE, de�ned as

NE =

pX
k=1

(ak � bak)2
pX

k=1

a2k

� 100% (20)

where ak and bak are the true and estimated parameters
of the unknown AR process. The results are shown in
Table 2. It can be seen that in contrast to the ILS-
CN method the proposed one consistently shows good
performance from high to low SNRs.

5 CONCLUSIONS

In this paper, a new method has been presented for es-
timating the parameters of autoregresive (AR) signals



Table 1: Estimated AR parameters of third-order AR
process using the ILS-CN and proposed methods.

True Estimated AR parameters
fakg SNR, dB ILS-CN Proposed

10 �2.2963 �2.3343
(�0.1080) (�0.0229)

a1 = 5 �2.2322 �2.3336
(�0.3983) (�0.0233)

�2.2990 0 2.1740 �2.3348
(�3.0840) (�0.0370)

10 2.1246 2.1963
(�0.1691) (�0.0358)

a2 = 5 2.1804 2.1953
(�0.6221) (�0.0365)

2.1262 0 15.9248 2.1975
(�22.0143) (�0.0356)

10 �0.7613 �0.8038
(�0.0848) (�0.0188)

a3 = 5 �0.7985 �0.8040
(�0.3171) (�0.0190)

�0.7604 0 106.8487 �0.8050
(�174.9853) (�0.0184)

Table 2: Normalized error NE with SNR.
NE(%) for third-order AR process

SNR 20 dB 10 dB 5 dB 0 dB

ILS-CN 0.0003 0:0001 0:0852 1.1353�105

Proposed 0.0774 0:0775 0:0758 0:0805

NE(%) for fourth-order AR process

SNR 20 dB 10 dB 5 dB 0 dB

ILS-CN 0:0139 0.0039 0.0933 2.8344�103

Proposed 0.9947 1.1447 0.9420 1.0109

corrupted by colored noise. The AR parameters are
computed from the damped sinusoidal model parame-
ters introduced in this paper as a novel model for the
autocorrelation sequence of the noise-free AR signal. A
least-squares type algorithm is used for estimating the
sinusoidal model parameters iteratively from the noisy
data. Compared with the extended improved least-
squares technique reported in [8], the proposed one con-
sistently gives more accurate results particularly at low
SNRs. Using the proposed method, the stability of the
estimated AR system is always guaranteed. The major
shortcoming is that it is computationally expensive.
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