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ABSTRACT

Superresolution algorithms use several blurred, under-
sampled and noisy images of a scene to reconstruct a
higher resolution version. In this paper we apply the
superresolution concept to the remote sensing scenario,
and develop a novel superresolution algorithm based on
quadratic programming, and compare it with existing
methods. The proposed algorithm achieves PSNR per-
formance similar to state-of-the-art techniques, provid-
ing additional capabilities in terms of uniqueness of the
solution and user-de�ned bounds for the superresolution
problem.

1 INTRODUCTION

Superresolution (SR) imaging consists in exploiting
multiple blurred, displaced, decimated and noisy low-
resolution (LR) pictures of the same scene, in order to
build a high resolution (HR) image or image sequence.
This research �eld has recently been very active, and a
number of SR applications have been proposed mainly
in the multimedia �eld (see e.g. [1]).

A SR system consists of three main tasks, namely esti-
mating the blur, estimating the motion of the available
pictures with respect to a reference one, and combin-
ing all pictures to obtain a deblurred HR image. The
blur point spread function is usually assumed known;
otherwise it can be measured or estimated [2]. The
motion characteristics between adjacent frames heavily
depend on the application. In the case of multimedia
video sequences it is necessary to assume independent
object motion within the scene [1]. In some applica-
tions, such as videosurveillance, simpler motion mod-
els are also suitable, such as global translational motion
due to camera panning at constant velocity. In this case,
the motion estimation problem is largely alleviated, and
faster algorithms can be devised due to the 2-D shift-
invariant image acquisition model [3, 5].
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As for picture combination, several techniques have
been proposed, based on di�erent prior image models,
such as the maximum likelihood (ML) and maximum
a posteriori (MAP) estimators [6]. These techniques
attempt to minimize an average quadratic error measure
on the LR data, such as mean squared error (MSE),
and have been shown to provide visually pleasant HR
reconstructions results in multimedia applications.

Although SR has been mainly developed for multi-
media, other applications exist where the image acqui-
sition process is characterized by a certain degree of re-
dundancy. As an example, SR has been applied in [3]
to forward-looking infrared data for aerial videosurveil-
lance, where adjacent frames may exhibit overlap re-
gions which can be used to improve the native sensor
resolution. Another possible application is in satellite
remote sensing; in fact, orbiting satellites image the
same region at regular intervals, in such a way that sev-
eral scenes of the same region, taken at di�erent times,
are available at the ground station, and can possibly be
used for SR. However, all the techniques presented so
far in a remote sensing context, e.g. [3, 4], deal with vi-
sual inspection of remote sensing images. On the other
hand, especially in case of automatic feature extraction
from remote sensing images, there is a strong need of im-
age quality assessment; therefore, in case SR is carried
out, the quality of the HR interpolated images must be
carefully evaluated. In general, the image quality issue
is a very well-known one in the remote sensing com-
munity, which has led to the consideration that, since
every pixel of an optical remote sensing image is a radi-
ance measurement, quality should be guaranteed at the
single pixel level rather than globally through an \av-
erage" quality metric such as peak signal-to-noise ratio
(PSNR). Therefore, if processing is carried out on the
data so as to modify pixel values, it is highly desirable
that the maximum deviation from the original data can
be bounded by a user-speci�ed value. This bounded er-
ror concept can be formalized as a minimax estimation
problem, or equivalently as an optimization problem in
L1 norm, and has already been applied e.g. to the
compression problem [7].



In this paper we propose a SR method, suitable for
remote sensing imagery, which applies the bounded er-
ror concept to the formation of a HR image from mul-
tiple LR ones. A main di�erence with respect to the
compression problem lies in the fact that in the SR ap-
plication the original HR image is not available for com-
parison; therefore it is not possible to tightly enforce a
user-de�ned bound on the absolute di�erence between
the reconstructed HR image and the ground truth. The
proposed algorithm allows the user to set two di�erent
bounds on the HR image. The �rst one measures the
compliance of the HR data with the observed LR images
through the image formation model; the second one ad-
dresses the arbitrary L1 closeness of the HR image to a
given smooth HR interpolation (e.g. bilinear or spline).

2 PROPOSED ALGORITHM

In the following we outline the SR algorithm proposed in
this paper. In particular, in Sect. 2.1 we de�ne the im-
age formation model used in the following; in Sect. 2.2
we detail the proposed technique named quadratic pro-
gramming superresolution (QPSR), while in Sect. 2.3
we emphasize its relation with other SR algorithms.

2.1 Image formation model

We consider a fairly general and widely used image for-
mation model. It is assumed that N LR images Y

k
,

k = 1; : : : ; N , are observed, each column vector Y k be-
ing the raster-scan reading of an M �M image. Each
of these images is obtained by arbitrary warping, linear
space-variant blurring and decimation of an original HR
image X of size L�L. A very general relation between
each Y

k
image and X is:

Y
k
= DkCkFkX +E

k
for 1 � k � N (1)

Fk being an L2 � L2 matrix describing the geometric
relation (e.g. translation, rotation, ...) between Y

k
and

X, Ck an L2 � L2 blur matrix, not necessarily struc-
tured, and Dk an M2 � L2 matrix de�ning the sub-
sampling operator. Ek is a zero-mean Gaussian noise
vector with autocorrelation matrix Wk. In the follow-
ing we will assume white noise stationary among all ob-
servations, i.e. Wk = �2I and �2 independent of k.
Moreover, in this paper we consider the case of global
translational motion and 2-D linear shift-invariant blur
common to all measurements, so that Ck = C 8k is a
block-Toeplitz matrix.
The model equations for each image can be grouped

to obtain a complete observation model as follows:

Y = HX +E (2)

being Y = [Y T

1
; : : : ; Y T

N ]
T , E = [ET

1
; : : : ; ET

N ]
T , and

H obtained by columnwise stacking D1C1F1, D2C2F2,
: : :, DNCNFN .
It is easily recognized that the model in Eq. 2 is a

classical image restoration problem, which can be solved

by means of ML, MAP and projection onto convex sets
(POCS) techniques [1] amongst others. All these tech-
niques are based on the remark that inverting Eq. 2 is a
highly ill-posed problem, which needs to be regularized
to obtain meaningful solutions. In the most classical
formulation the ML estimate is formulated as the solu-
tion of a constrained least squares minimization problem
with cost function

�(X̂) = jjY �HX̂jj2
2
+ �jjSX̂ jj2

2
(3)

where X̂ is the estimated HR image and jj � jj2
2
denotes

the squared L2 norm. The cost function has two terms
weighted by the Lagrange multiplier �. The leftmost
term enforces compatibility between X̂ and the image
formation model in terms of MSE of the residual image;
the rightmost one enforces global smoothness of the so-
lution by penalizing high values of the functional SX̂,
with S a highpass operator, e.g. the 2-D Laplacian.
The optimal value of � can be found by bisection search
imposing that jjY �HX̂jj2

2
= jjEjj2

2
within a given tol-

erance.

2.2 Superresolution by quadratic programming

Although the ML algorithm provides visually good HR
reconstructions, it solves the restoration problem by
minimizing an average quadratic cost function. How-
ever, as stated, in remote sensing applications a min-
imax solution should be sought. However, unlike the
image compression problem, in the case of SR the orig-
inal image is not available; therefore our proposed ap-
proach is to impose a maximum distance between the re-
constructed data and a reasonable approximation of the
original HR data obtained by interpolating the observed
LR data. The maximum distance should re
ect the con-
�dence that the user has in this approximation. A sim-
ilar reasoning can be made for the compliance of the
reconstructed image with the image formation model.
In particular, the SR algorithm proposed in this pa-

per formulates the image SR problem in the following
way. Suppose that X0 is a smooth HR approximation
to X, e.g. obtained by nearest neighbor, bilinear or
spline interpolation; assume also that the user has a
con�dence in that interpolation, which can be quanti-
�ed as a maximum desired lower or upper deviation (UH

l

and UH

h
respectively) of the solution X̂ from the image

X0. Moreover, suppose that the user has a certain con-
�dence in the accuracy of the image formation model
of Eq. 2, which can be expressed in terms of maximum
lower and upper bounds on the residual images (UL

l
and

UL

h respectively). In our approach we solve the following
optimization problem:

minimize jjSX̂jj2
2

subject to UL

l < Y �HX̂ < UL

u

UH

l
< X̂ �X

0
< UH

h

0 < X̂ < 255

(4)



This is easily recognized as a large-scale quadratic pro-
gramming problem with linear constraints and variable
bounds, which can be solved by standard interior-point
methods. In the case of a linear shift-invariant image
formation model, the Hessian matrix STS is positive
de�nite; hence the problem is a convex one, and if a local
minimizer exists, then it is the unique global minimizer
for this problem. It is worth noticing that, while the
UH

l
, UH

h
, UL

l
, and UL

h
bounds are considered constant

vectors in this work in order to obtain HR solutions
with bounded deviations from a reference model, the
proposed formulation can also encompass space-varying
bounds and thus easily perform spatially adaptive reg-
ularization.

2.3 Relation to other methods

Several remarks can be made as to the relation between
the proposed QPSR algorithm and other existing meth-
ods. The use of quadratic programming in the �eld of
image restoration has already been proposed in [8], in
an attempt to incorporate a positivity constraint in the
solution. In this respect, our innovation is to impose
variable bounds with respect to a trusted approxima-
tion to the solution, and to introduce a linear constraint
related to the �delity of the solution to the image for-
mation model.
The main di�erence of QPSR with respect to the ML

solution is its ability to incorporate non-quadratic con-
straints into the problem, thus allowing to set bounds
on the solution at the HR and LR pixel level, includ-
ing the positivity constraint; additionally, the computa-
tion of a regularization parameter is not required. The
major advantages of QPSR with respect to POCS are
the following. Firstly, while QPSR also applies an L1
norm constraint, in POCS the solution depends on the
order the projection operators are applied; conversely,
QPSR selects among all feasible solutions the one which
minimizes the squared norm of a user-de�ned quadratic
functional, e.g. maximizing the smoothness of the so-
lution. Secondly, the POCS method as proposed in the
literature does not enforce a constraint on the minimax
closeness of the solution to a user-speci�ed image.

3 EXPERIMENTAL RESULTS

In the following we report comparative results of sev-
eral interpolation and SR algorithms on band 1 of a
LANDSAT 7 ETM+ image. The results are obtained
by simulating four 128�128 images with horizontal and
vertical shifts of one HR pixel from an original 256�256
image portion. The noise standard deviation is � = 1,
and the blur kernel is 2�2 uniform with unit DC ampli-
tude. The reconstruction aims at improving resolution
of a factor 2 both horizontally and vertically. It must
be remarked that in our simulations, even though the
original image is not known by the SR algorithms, it
is available for comparison, so that the comparative re-
sults reported in the following are between the SR and

Method PSNR (dB) Max. err.
NN. int. 43.1 11
Bilinear int. 43.2 13
Spline int. 42.98 11
ML 45.68 8
POCS 45.09 7
QPSR 45.65 7

Table 1: Comparison between di�erent SR techniques:
PSNR and maximum error between reconstruction and
original

original image, not the reference X
0
. We consider near-

est neighbor interpolation, bilinear interpolation, third
order spline interpolation, the ML algorithm, the POCS
algorithm and the proposed QPSR algorithm. In par-
ticular, we impose on the QPSR solution a maximum
distance of �7 with respect to the third order spline in-
terpolation, and a bound of �4 on the LR residual im-
age. The POCS algorithm is run with a bound of �2 on
the residual image, and is also initialized with a third
order spline interpolation. A 2-D Laplacian has been
used as smoothness constraint for the ML and QPSR
methods.

The obtained HR images have been compared with
the original, noise-free image. The achieved results, in
terms of PSNR and maximum absolute error with re-
spect to the original are reported in Tab. 1. It is worth
noticing that all SR algorithms achieve better results
than single frame interpolators, as to both PSNR and
maximum error. The best algorithm in terms of PSNR is
the ML one; the QPSR method nearly achieves the same
performance, while the POCS result is slightly worse.
However, QPSR and POCS achieve a lower maximum
error than ML.

Visual results are reported in Fig. 3 for the ML
and QPSR algorithms. As can be seen, QPSR yields
a sharper reconstruction than ML, and very similar
to that of the POCS algorithm (which is not reported
here). In summary, the best visual results are achieved
by QPSR and POCS, with the important advantage of
QPSR of providing a unique solution to the SR problem,
along with a minimax constraint in terms of distance of
the solution from a prototype one.

4 CONCLUSIONS

In this paper we have presented a novel image SR algo-
rithm based on quadratic programming. The algorithm
has complexity comparable to that of the ML and POCS
techniques, and achieves similar performance in terms of
PSNR and maximum absolute error of the reconstructed
HR image with respect to the original. Additionally, it
provides a unique solution to the SR problem, and al-
lows to set user-de�ned bounds on the compatibility of
the solution with the image formation model and with



(a) (b)
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Figure 1: (a) Original HR image; (b) Reference interpolated image X0; (c) ML reconstructed HR image; (d) QPSR
reconstructed SR image

a user-provided reference solution, thus being a suitable
choice for resolution enhancement of remote sensing im-
ages.
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