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ABSTRACT

In multisensor signal processing (geophysics, underwa-
ter acoustic, etc.), the Singular Value Decomposition
(SVD) is a useful tool to perform a separation of the
initial dataset into two complementary subspaces. The
SVD of the data matrix {z,t} provides two orthogonal
matrices that convey information on propagation vec-
tors and normalized wavelets. The constraint imposed
by the orthogonality’s condition for the propagation vec-
tors introduce errors in the signal subspace. To relax
this condition, another matrix of normalized wavelet is
calculated exploiting the concept of Independent Com-
ponent Analysis (ICA). Efficiency of this new separation
tool using the combined SVD-ICA procedure is shown
on realistic dataset.

1 Introduction

The main goal of SVD in multisensor signal processing
is to obtain a decomposition of the initial dataset into
two complementary subspaces called signal and noise
subspace [5]. In some applications [8], the SVD is used
to separate waves with a high and low degree of sensor-
to-sensor correlation. In geophysics for example, in Ver-
tical Seismic Profiling in particular [4], this tool is used
to define a low-pass, a band-pass and a high-pass SVD
eigenimages, in terms of the range of singular values and
therefore to make a separation between the downgoing
wavefield, the upgoing wavefield and the noise.

For signals recorded on multisensors, the SVD of the
space-time data matrix {z,t} provides two orthogonal
matrices that convey information on propagation vec-
tors and normalized wavelets, and one pseudodiagonal
matrix of singular values. Since the propagation vec-
tors are, generally, not orthogonal, we propose to asso-
ciate the SVD procedure with the Independent Compo-
nent Analysis (ICA). In fact, we construct a new ba-
sis where the normalized waves are independent at the
fourth-order and, in the same time, we relax the orthog-
onality’s condition for the propagation vectors. Appli-

cation of this new separation tool on data is shown in
the last section, where we illustrate the efficiency of the
combined SVD-ICA procedure.

2 Singular Value Decomposition

The SVD is a powerful decomposition in matrix compu-
tation. The basic approach for computing the SVD is
given in [6].

Let s;(t) be the signal received on the it* sensor. With
signals sampled in time s;; = s;(jT%), where i = 1..N,,
N, the number of sensors and T, the time sample ratio,
we can write the received signals in a data matrix (in
generally, the number of time samples V; is greater than
N,):

S = {Sz’j} € RN=xM (1)
The SVD of data matrix S is given by [6]:
N
S=UAVT =) Newvf (2)
k=1

where U = [uq, .., U, .., un, ] is an N x N, orthonormal
matrix made up of left singular vectors uy € RV=, V =
[v1, .., Uk, .., UN,] is an Ny X Ny orthonormal matrix made
up of right singular vectors vy € R, and A is a N, x N;
pseudodiagonal matrix, A = diag (A1, .., Ak, --, An) made
up of singular values \;, € RT, with the diagonal entries
ordered A\; > ... > Ay > 0. The superscript T indicates
transpose and N = min(N,, Ny).

The product ugvi is an N, x N; unitary rank ma-
trix named the k' eigenimage of data matrix S [1].
Therefore, the received data S is given by the sum
of eigenimages, pondered by the correspondent singu-
lar value. Let note u; = [ukl,..,uki,..,usz]T and
Ve = [Vk1,--Vkjs ..,kat]T the ktP left, respectively
right, singular vector. Sample data s;; at time j on
sensor 4 is expressed as:

N

8ij ZZ AR UkiVk;j 3)

k=1



e vy; gives the time dependance, hence the right sin-
gular vector vy is named normalized wavelets,

® uy; gives the amplitude in real case (amplitude and
phase in complex case), thus the left singular vector
ug is named propagation vector.

In the noise free case, if the recorded signals are linearly
dependent, for example if they are equal to within a
scale factor, the matrix S is of rank one and the perfect
reconstruction requires only the first eigenimage [4]. If
the N, recorded signals are linearly independent, the
matrix S is full rank and the perfect reconstruction
requires all eigenimages.

Hence, in practice, before initiating the SVD calcula-
tion, a time correction operation on the received data is
applied to obtain a waves alignment (infinite apparent
velocity of propagation on the array sensor), which
allows a decomposition with a smaller space [7].

3 Signal and noise subspaces

Supposing the noise independent from one sensor to
other, the separation between the signal and noise sub-
space, after the time correction operation, is given by:

P N
S=SP+8y =) Muvg + > Mwpv{  (4)
k=1 k=P+1

where the first P eigenimages of data matrix represent
the signal subspace S’ and the other N — P eigenimages
represent the noise subspace SP. The choice of P de-
pends on the relative magnitudes of the singular values.
For example, if we have only a non-dispersive source
wave with infinite apparent velocity of propagation on
the array sensor, the rank P that describe the signal
subspace will be equal to 1.

Furthermore, we can make a separation of the signal
subspace into two orthogonal subspaces named low-pass
SLE respectively band-pass SEE eigenimages [4]:

Q P
SP =8P+ 8PP =" Moo + D Mewpvf ()

k=1 k=Q+1
where the low-pass eigenimage, associated to the higher
singular values, contains the source waves with a high
degree of sensor-to-sensor correlation, the band-pass
eigenimage, associated to the lower singular values
in the signal subspace, is constructed by events with
a weak degree of sensor-to-sensor correlation, and @
is the number of the highly correlated source waves
depending on the relative magnitudes of the singular
values. In geophysics for example, in Vertical Seismic
Profiling, the low-pass eigenimage usually contains
the downgoing waves and the band-pass eigenimage
contains the upgoing waves.

4 SVD and ICA

The normalized wavelets that describe the signal sub-
space [v1, .., Uk, --, UP] " Vp are orthogonal, therefore
statistically independent at the second-order. Also, by
construction, the propagation vectors that describe the
signal subspace [u1, .., U, .., up] " Up are orthogonal.

There is no physical reason for which the propagation
vectors uy are orthogonal. Furthermore, we can have
waves in the dataset for which the propagation vectors
are not orthogonal. In this case, imposing the criterion
of orthogonality for the left matrix, we’ll force the nor-
malized wavelets in the right matrix to be a mixture of
source waves.

To relax this constrain, the idea is to find another matrix
of normalized wavelets [0y, .., Uy, .., Up] "% ¥ for which
these waves are “the most independent possible”. This
can be made with the Independent Component Analysis
(ICA).

ICA can be solved by a two-stage algorithm, consist-
ing of a prewithening and a high-order step [9]. The
first step is accomplished by the SVD since the normal-
ized wavelets in Vp are statistically independent at the
second-order. The second step consist in finding a P x P
rotation [unitary] matrix B for which the components of
Vp = VpB are independent. Denoting by I' the family
of cumulants of Vp and by K those of Vp, the rotation
matrix B is given by approximate diagonalization of the
sample cumulant [3]:

Kijkl :Z BiijqurBlstqrs (6)

pars

The way to solve this system is, for example, Joint Ap-
proximate Diagonalization of Eigenmatrices (JADE) [2]
or Maximal Diagonality (MD) [3]. With Va7 = BVZ,
the signal subspace given in (4) can be rewritten:

SY =UpApVE = UpApBVE =CpVE  (7)

From the matrix Cp = [e1,..,Ck,..,cp], We can ob-
tain two matrices. One is a N, x P matrix ﬁp =
[@1, .., Uk, .., up] with normalized columns Uy, = ¢/ ||ck|
and the second is a P x P diagonal matrix Ap =
diag (01, ..,0p) with the diagonal inputs 0 = ||ck||-
The inputs in the diagonal matrix are generally not or-
dered. Hence, we perform a permutation between the
columns of Up as well as the columns of Vp to order the
elements of Ap. The signal subspace is given by:

P
SE =UpApVE =) driik} ®)
k=1

Therefore, in this decomposition we have relaxed the
condition of orthogonality for the propagation vectors
Uy and, in the same time, imposed a stronger criterion
for the normalized wavelets vy, i.e. to be statistically



independents at the fourth-order. Supposing the diago-
nal inputs ordered, i.e. 6; > ... > dp > 0, the low-pass

SLP and the band-pass SBP eigenimages using SVD-
ICA are:
_ _ Q1 P
Sf = SSLP + Sfp :Z 5kﬂkﬁ+ Z (Skﬂk@g (9)
k=1 k=Q1+1

where Q1 is the number of the highly correlated source
waves depending on the relative magnitudes of the ele-
ments in the diagonal matrix Ap.

5 Application on synthetic data

The recorded signals S on array sensor (N, = 8), after
the time correction operation, are represented in figure
1. On this figure we have 2 source waves: one wave

Figure 1: The received signals S

with infinite apparent velocity of propagation on the
array (arriving at the same time on each sensor) and
one wave with a negative apparent velocity of propa-
gation on the array, which is present between sensor 1
and 5. On each sensor we have applied an amplitude
reduction and a phase rotation to simulate the absorp-
tion phenomena and the dispersion effect. The samples
number is Ny = 512 and the mean signal-to-noise ratio
is SNRean = 30dB.

The singular values given by SVD are presented in fig-
ure 2. The number of singular values used to describe

Figure 2: The relative magnitudes in A

the signal subspace is P = 7, among the first two are
related to the highest correlated waves (@ = 2).
We can see in figure 3 that the first two normalized

wavelets in Vp are a mixture of the source waves.
The low-pass eigenimage S'F is presented in figure

.
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Figure 3: The first 2 normalized wavelets in Vp
4 and the band-pass eigenimage SB¥ in figure 5. It is
clear from these figures that the classical SVD implies
some errors in the low-pass and band-pass eigenimages
for a wavefield separation objective.
In figure 6 are presented the relative magnitudes of
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Figure 4: The low-pass eigenimage SF

Figure 5: The band-pass eigenimage SBF

the elements in the diagonal matrix Ap obtained using
the combined SVD-ICA on the signal subspace (P = 7)
and also the last singular value given by SVD, related
to the noise subspace. The number of components that
describes the high correlated waves is @1 = 2.

The first two normalized wavelets in Vp presented in
figure 7 are clearly nearest to the original waves than
the normalized wavelets given by SVD.



Figure 6: The relative magnitudes in Ap

Figure 7: The first 2 normalized wavelets in Ve

The low-pass eigenimage .§’~LP is given in figure 8 and
the band-pass eigenimage SB¥ in figure 9. The low-
pass eigenimage extracts the first highly correlated wave
without any visible interference with the other waves.
The residual errors presented in classical SVD are elim-
inated. This improvement is due to the fact that by ICA
we have imposed a fourth-order independence condition
stronger than decorrelation used in classical SVD.
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Figure 8: The low-pass eigenimage SZF

6 Conclusions

We have presented a new method for the separation of
the multidimensional signal space. The classical SVD
imposes the orthogonality for the propagation vectors
and forces the normalized wavelets in the left singular
matrix to be a mixture of source waves. Using the com-
bined SVD-ICA, the residual errors presented in clas-
sical SVD are eliminated. This improvement is due to
the fact that by ICA we have imposed a fourth-order in-
dependence condition stronger than decorrelation used
in classical SVD. With this decomposition method we

Figure 9: The band-pass eigenimage SBP

relax the non physically justified orthogonality of the
propagation vectors uy.
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