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ABSTRACT

We investigate Bayesian solutions to unsupervised im-
age segmentation based on the double Markov random
field model. Inference on the number of classes in the
image is done with reversible jump Metropolis moves.
These moves are implemented by splitting and merg-
ing classes. Tests are conducted on satellite and aerial
images.

1 INTRODUCTION

A double Markov random field is a hierarchical model
for an image composed of several textures (or classes),
where both the grey levels of each class and the class
labels are described by Markov random fields. It has
been extensively used in Bayesian approaches to image
segmentation, see [7] for instance.

Consider a rectangular lattice of pixel sites S. An im-
age consists of an array of grey values (zs)scs and labels
(ys)ses, identifying the texture type present. Let there
be R textures in the image and each texture, defined
on all of S, is a Markov random field T", parameterised
by 6,., with neighbourhood system having set of cliques
Cr. The label process is another Markov random field
Y, parameterised by 8 and with neighbourhood system
having set of cliques Cy. All the fields are independent
conditional on model parameters and their distributions
have the following Gibbs representation:

P =tlg,) = SREEEEL )

exp[—Uy(y, R7 /8)]
ZY(RJ ﬂ) .

The partition functions Z, and Zy cannot usually be
evaluated. In this paper, we will define the P(T"|6,)
to be Gaussian Markov random fields (GMRFs), so that
for a GMRF having K clique types in its neighbourhood
system, 0, = (ur,02,0p1,...,0,k), and P(Y = y|R,8)
to be a Potts model, so § > 0.

The double Markov random field is a probability dis-
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tribution over X and Y of the form

P(X=2Y=y|R,61,...,0R,5)
R
:P(Y:leJB) HP(Tg‘T:er'er)a (3)
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where S, = {s € S|y, = r} and T , =5, denote T"
and z restricted to S, and the distributions of 7" and
Y are given in Equations 1 and 2.

In what follows we assume that the classes are or-
dered by their mean value i.e. u, < pr41. The ordering
removes the non-identifiability of a segmentation, in the
sense that, without the ordering, the method cannot dis-
tinguish between segmentations where the class labels
are permuted. The non-identifiability would complicate
the method that we propose for determining R.

2 USING THE MODEL FOR SEGMENTA-
TION

In a Bayesian approach to unsupervised segmentation,
the goal is to calculate the distribution of Y, R and the
model parameters if unknown, given X, that is:

P(Y,R,0,...,01, 3| X)
OcP(X7Y|R7617'"7HR7ﬂ)P(R7017'"70R7ﬂ)7 (4)

where P(R,0y,...,0r,[3) is a prior distribution on the
parameters. The parameters are usually assumed inde-
pendent a priori. In the GMRF case, these are assumed
to be: uniform prior distribution for u, over the range
[0,255], inverse gamma prior for o2 with parameters a
and b, uniform prior for (6,1, ...,0,x) over the allowable
range of values (see [6] for this range in the case of a sec-
ond order neighbourhood system) and geometric prior
on R with parameter p. The only available technique
to evaluate this posterior distribution is Monte Carlo
Markov chain (MCMC) simulation, usually the Gibbs
sampler, where one simulates from the full conditional
distributions of each Y;, s € S, and those of 8 and 6,,
r=1,...,R. To simulate from R, other methods are
needed, as described below.



For the double Markov random field, the full condi-
tional distribution for the pixel labels is not easy to eval-
uate. We use an approximation to it; in [7] it was shown
that the pseudo-likelihood performed well,

P(X,Y|R,B,601,...,0R)
~ P(Y|R,8) [[ P(X:|6v., X5t €ns), (5)
SES

where 7, is the neighbourhood of s. For each s, it is
assumed that the texture Y; holds in the entire neigh-
bourhood of s. This approximation is developed in [2].
In the case of the Potts-Gaussian model, the full condi-
tional of Y is:
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where < s,j > means that pixels s and j form a clique
of type k (horizontal, vertical neighbours, etc.), 7, is
the neighbourhood of s in the Potts model and I() is
the indicator function.

The Gibbs sampler repeatedly samples from each full
conditional in turn, forming a Markov chain whose sta-
tionary distribution is the posterior distribution. As a
solution, we take the MAP or most likely posterior seg-
mentation. This is found by running Gibbs sampling in
tandem with simulated annealing to find the maximum.

3 THE REVERSIBLE JUMP APPROACH
TO SAMPLING FROM R

Reversible jump has been used for identifying R in image
segmentation by Markov random fields [1, 5]. Reversible
jump was proposed in [3], which we refer to for a full
description of the approach. The idea is to sample R by
a Metropolis move. This requires an acceptance prob-
ability, and in this application the only moves that are
both practical and easy to propose with a non-zero ac-
ceptance probability are to increase or decrease R by 1.
Increasing R by 1 requires that we generate parameter
values for a new class, and a new segmentation that in-
volves the new class. The new parameter values must be
generated according to a 1-1 transformation between the
new set of values and the old parameters together with
random numbers necessary to generate the parameters
for the new class. So a move from O = (61,...,0R)
to @k = (07, -..,0%,0%,,) is achieved with a set ran-
dom numbers u of the same dimension as 6%, ; such that
there is a 1-1 function (Og, u) <+ ©%, ;. The usual con-
ditions of reversibility and irreducibility must be main-
tained. Decreasing R by 1 requires that we eliminate

one of the classes, and propose a segmentation where
the deleted class is not present. The reversibility means
that this move must be done using the same 1-1 func-
tion between %, ; and (Or,u). Once either move has
been done, an acceptance probability can be computed.
For the move to increase R to R + 1, with a change in
parameters from ©g to ©%,,, and a change in segmen-
tation from Y to Y*, this acceptance probability is the
minimum of 1 and

P(X,Y*|R+1,@E+1,,B) P( E—i—l) P(R+1)
P(X,Y|R,Or,f) P(Or) P(R)

y 1 P(decrease R+ 1) ‘6(®R,u)

P(u) P(increase R) 00%

, (7

where the final partial derivative is the Jacobian of the
transformation (O g, u) = ©%,;, and P(decrease R+1)
and P(increase R) refer to any other probabilities in-
volved in decreasing or increasing the number of classes
(for example, randomly choosing which class to delete).

The above is a strategy for sampling for R. Sampling
from the other parameter values and Y is from the full
conditionals, as described in Section 2. Repeated sam-
pling like this in tandem with simulated annealing pro-
duces our solution.

4 SPLIT AND MERGE MOVES

Increasing R by 1 is done by choosing an existing class
and splitting it into two. Several split moves for in-
creasing R have been considered. Finally we propose
the following, which is a compromise between computa-
tional complexity and arriving at a proposed new seg-
mentation that has a reasonable acceptance probability.
To increase the number of classes from R to R+ 1, we
propose to:

1. Randomly pick a non-empty class ¢ to split.

2. Generate new parameters 0%, and 0%, from 6. and
random numbers u by a 1-1 transformation such
that dim(6., u) = dim(6%,6%,). For GMRF texture
models, we use the following, designed to be simple
perturbations of the current parameters:

/‘:1 = Hec — U10¢ HZz = e +U10,
o = 0o (14 us) o =0 (l—us) (8

* *
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where the w; is uniform(0,1), us is uniform(-1,1),
Uz is uniform(-0.1,0.1) and k = 1,...,K. The
Jacobian of the transformation in Equation 8 is
40321{ .

3. Check to see that the new means are still ordered
(that is, pe—1 < ply < piy < pey1) and lie in the
prior range [0, 255]. If not, reject move immediately.
If so, continue.



4. Assign all labels currently assigned to class ¢ to
classes ¢l or ¢2. This is done as follows. Labels
in the set S. are assigned randomly to either ¢l or
¢2. Then several Gibbs sampling sweeps are taken
over S, only, using classes ¢l and ¢2 and the full
conditionals of Equation 6. The Gibbs sampling
hopefully produces homogeneous regions in S, of
each new class.

5. Compute the acceptance probability (see below)
and accept or reject the move. If accept, relabel
parameters and classes to include cl and c2.

The choices for the u at step 2 are a balance between
allowing the possibility of reasonably large changes in
the properties of old and new classes, and restricting
changes so that the chance of accepting the move is not
always 0.

Reducing R is done by choosing two existing classes
and merging them into one. The merge move is to
choose a class cl, select the class ¢2 that has closest
mean to it (from the ordering on means property, this is
either ¢1+4 1 or ¢l — 1) and propose new parameters for
the merged class ¢ that are the inverse of the transforma-
tion in Equation 8. We use the following transformation
of parameters for the reversal of the split transforma-
tion:

* ni
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where n; and ny are the number of pixels assigned to ¢l
and ¢2 respectively.

The accept probability is rather complicated but it
can be shown that, using the pseudolikelihood approx-
imation and following Equation 7, in the case of using
2nd order GMRFs for textures (so K = 4) and 1st order
Potts model for Y, it is the minimum of 1 and
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Figure 1: An aerial image on the left, with MAP seg-
mentation, using splitting and merging of non-empty
classes.

where |Ag| is the volume of the allowable range of clique
parameters (see [6]),
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and P,jjc is the probability associated with the Gibbs
sampling sweeps on the new textures, and is given by:

P B H exp [— ((6*)2/2059 + BZ]E”S Iy — y;)]
alloc — a Cox '—271'0'2;?

(11)
for normalising constant summing over the two new
classes:

> [ (€)2/207) + B ey, 0 — 47)]
r=cl,c2 \% 27‘-0:2 .

We refer to [8] for details of the derivation of Equation
10. The accept probability for the merge move is the
maximum of 1 and the inverse of Equation 10, consider-
ing the merge of classes c1 and ¢2 into class ¢ as a split
from ¢ to cl and c2.

Cs =

5 EXPERIMENTS

Figure 1 shows an aerial image of an agricultural area,
with the MAP solution from the reversible jump algo-
rithm. The algorithm finally converged to 10 classes.
This is an oversegmentation, in the sense of discriminat-
ing the main classes in the image: different fields, trees
and the road. It has also segmented each field into dif-
ferent classes that correspond to different colourations
in the image.

Figure 2 is an analysis of a satellite image of an area
of Holland. In this case we end up with 24 classes. This



Figure 2: Image of an agricultural area (top), with MAP
segmentation (bottom).

represents another oversegmentation; for example, the
reversible jump method of [5] finds 10 classes. The im-
age consists of fields, each composed of very few grey
levels, and the algorithm classifies the fields of different
grey levels into different classes, and assigns 3 classes
to the more textured urban areas. These three urban
classes have different mean intensity, so the algorithm
seems to divide the urban areas according to intensity,
and has ignored the small and similar scale texture of
all the urban areas. Although there are a large number
of classes, most of these are assigned to a small number
of pixels. In fact, 90% of pixels are assigned to only 4
classes. In spite of this, the algorithm did not merge the
classes assigned to only a small number of pixels. We
refer to [8] for more details.

6 CONCLUSIONS

In this paper we have developed a segmentation algo-
rithm based around Markov random fields and Bayesian
inference, implemented with MCMC. The split/merge
moves proposed here seem to oversegment aerial and

satellite images. Typically there are several classes that
are assigned to only a small proportion of the image,
and yet are not merged. Possibilities for reducing the
number of classes found would be larger neighbourhood
orders for the labels, or fixing 3 to be reasonably large,
running an MPM (marginal posterior mode) sampler or
some form of post-processing. Other MCMC approaches
that infer the number of classes may also provide ideas,
particularly those using stochastic geometry (see [4] for
work in Projet Ariana). These will be topics for future
work.
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