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ABSTRACT

This paper proposes two color texture descriptors based

on the introduction of a fuzzy color symilarity function:

the spatial color similarity pattern and the spatial color

symmetry spread index. Both descriptors embed infor-

mation on the spatial color distribution within a �rst-

order statistical distribution. Experiments show that

the proposed descriptors can be successfully used for

color texture recognition and retrieval.

1 INTRODUCTION

All image processing algorithms must deal with the im-

precision and vagueness that naturally arise in the digi-

tal representation of visual information. Noise, quanti-

zation and sampling errors, the tolerance of the human

visual system are the cause of this imprecision. This

strongly suggests that fuzzy models may be used for ta-

king them into account.

The description of color textures emerged as a real cha-

llenge, especially after the massive interest shown in

recent years for image retrieval and indexing systems

[12], [9]. Indeed, generalist color images can be e�ec-

tively described following a color{texture{feature para-

digm [3], [9]. Color alone, although was proven to be the

main human perceptual factor [8], cannot provide enou-

gh discriminative power between images. Color texture

and strong visual features (such as edges or corners)

must be taken into account. Still, many problems arri-

se in the de�nition of color texture parameters and in

color edge extraction, due to the vector nature of co-

lor data, which implies the necessity of developing new

processing and analysis methods. Thus, we will investi-

gate the possibility of obtaining texture descriptors that

embed spatial information about the color distribution

by using fuzzy color models and fuzzy color similarity

measures.

The remainder of the paper is organized as follows: sec-

tion 2 presents some fundamentals of fuzzy color mo-

deling, section 3 introduces the proposed fuzzy-based

texture descriptors, and section 4 presents some experi-

mental results. Finally, section 5 presents some conclu-

sions.

2 FUZZY COLOR MODELS

In the case of color images, color attributes and co-

lor di�erences play a particularly important role in the

perception of objects. The process of measuring co-

lor di�erences must be designed to maintain a balan-

ce between the computed and the perceived di�erence.

The CIE (Commission Internationale d'Eclairage) re-

gulations specify color spaces (the Lab family) that pro-

vide a perceptual color di�erence equal to the Euclidean

inter-vector distance. Still, the simple use of that color

representation does not explain the similar perception

and the visual confusion of certain colors. We propo-

se to deal with this factors in the framework of a fuzzy

color representation.

We will thus associate to each color c, that usually is

a point in the three-dimensional color gamut C (deter-

mined by the color space representation), a Lukasiewicz

function, �c : C! [0; 1] that measures the membership

degree of any color c' fromC within the class \color c".

Thus, �c(c
0) is a scalar within [0,1] that expresses how

similar is the color c' with respect to the color c.

The analytical de�nition of the function �c must take

into account the natural perception and thus �c must

be decreasing with respect to the inter-color distance

d(c,c') (regardless the de�nition of that distance). A

typical model is the one proposed by Ha�ner [5] (in the

framework of comparison of color histograms for image

indexing):

�c(c
0) = exp
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with

dmax = max
c;c

02C

(d(c; c0)) : (2)

The tuning parameter � in (1) allows to consider color

similarity functions that are more or less localized, and

thus to modify the inter-color confusion. We may al-

so notice that the expression in (1) implicitly depends

on the maximal dimension of the color gamut (through

dmax) and thus takes into account the color quantiza-

tion. Once the color quantization is chosen and thus



dmax is determined, the tuning parameter � can be easi-

ly related to the imposed similarity degree �1 associated

to a color lying at an unitary distance (d(c; c0) = 1) from

the target color c, by � = �d
2
max ln�1. A similar mo-

del (but oriented for the processing within the Lab color

space) was proposed by Vertan et al [13] as:

�c(c
0) =

(
1; if d(c; c0) � JND

max
�
0; 1�

d(c;c
0
)

�JND

�
; if d(c; c0) > JND

:

(3)

In the equation above, JND is the just noticeable color

di�erence, which, for the Lab color space, equals 2.3. We

will further prefer the form from (1), as it is smoother

and color space independent.

3 FUZZY LOCAL DISTRIBUTION MEASU-

RES

3.1 The spatial color similarity pattern

Ojala [10] �rst introduced the concept of local binary

pattern (LBP) for the description of texture. A LBP

is de�ned for a given pixel within a gray-level image as

the weighted sum of the thresholded values (according

to the value of the current processed pixel) within the

3 x 3 neighborhood of the processed pixel. Thus, a bi-

nary pattern is associated to the processed pixel. The

weighting mask implements a binary-to-decimal coding

of the binary pattern, as shown in �gure 1. Based on

1 2 3

4 5 6

7 8 9

0 0 0

0 1 1

1 1 1

1 2 4

128 0 8

64 32 16

Neighborhood LBP Mask

Pattern=00011110

LBP=8+16+32+64=120

Figure 1: The computation of a LBP (according to [6,

7]).

the same technique, several extensions have been de�ned

[6, 7], in order to introduce the multiresolution approa-

ch [7] and the transitional and symmetry coding of the

binary pattern [6].

However, the simple principle of thresholding cannot be

applied to color (or, generally, to any vector-valued)

images, since a direct, simple and topolgy-preserving

ordering relation does not exist within a vector space

[1]. We propose to replace the binary ordering relation

between two colors with the fuzzy similarity degree be-

tween the two colors, computed according to (1). The

thresholding operation is thus replaced by the compu-

tation of the similarity between the color of the current

processed pixel and the colors of its eight neighboring

pixels. The result of this operation is real-valued, and it

is incorrect to called it LBP. Still, we will maintain the

principle of computing a single scalar that embeds the

pattern, by using the same weighting mask as in �gu-

re 1. The obtained scalar will provide the same [0; 256]

range as the basic LBP (see �gure 2).
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Figure 2: The computation of the spatial color similarity

pattern; the similarity between the values i and j within

the image region is modeled by max(0; 1� ji� jj=4).

3.2 The spatial color symmetry spread index

The spatial color symmetry spread index is a scalar that

can globally characterize the second order statistical dis-

tribution of pixels having a same color within a spatial

neighborhood. Thus, this index will enable the distinc-

tion between edge pixels, corner pixels and coherent pi-

xels (placed in uniform color regions). For each ima-

ge pixel we consider a squared, centered neighborhood.

Within this neighborhood, all pixels having the same co-

lor as the color of the central pixel are marked as ones,

all other pixels being marked as null. For the resul-

ting binary mask we compute the number of one-valued

pixels within several symmetrical distributed mask sli-

ces. We will use an eight slides partitioning of the mask

(Q1 � Q8, as shown in �gure 3, in order to favor the

rotation invariance. We may note that all the slices of

the mask contain its central pixel. Let we denote by s
i

Figure 3: A 3 x 3 mask partitioned into eight partially

superposed slices.

the sum of values within each mask slice Q
i
. If all the s

i



numbers are about the same, it means that the central

pixel belongs to an area of relative symmetrical spatial

distribution of its color. If there are dissimilarities be-

tween the s
i
numbers, the central pixel is characterized

by a color that is unevenly distributed in its neighbor-

hood. We de�ne the color symmetry spread index S as

(4):

S =
max

i
fs

i
g �min

i
fs

i
gP

i

s
i

: (4)

It can be easily noticed that the S index is a range-to-

mean ratio and measures the uniformity of the set fs
i
g.

4 EXPERIMENTS

The main test database (Ornament) consists of

140 classes of colored ornamental stones (mar-

ble, granite, travertine and limestone), taken

from the web site of Marble and Granite, Inc.

(http://www.marbleandgranite.com). From each

original image we randomly cropped ten 128 by 128

sub-images, that form its corresponding class, for a

total of 1400 images. We equally used the generalist

color texture database (Textures), consisting of 100

classes of nine 128 by 128 images of various natural

and arti�cial, regular and irregular textures, for a

total of 900 images (part of this database is taken

from the well-known MIT Vistex texture database

http://www.media.mit.edu/vismod; see �gure 4 for a

preview of a random selection of typical natural texture

images within the Textures image database).

Figure 4: Typical textures within the Ornament image

database.

Each color texture is described by the histogram of spa-

tial color similarity patterns and the average (w.r. to

the entire image) spatial color symmetry spread index.

Both measures are computed for a six-bin uniform quan-

tization of each RGB color component (yielding thus a

216 �xed color quantization) and �1 = 0:25. The recog-

nition performance is measured by the average recogni-

tion ratio (for all images within the database) according

to a 1-, 3-, 5- and 7- nearest neighbor (NN) technique.

Since the correct class membership is known for any

image within the database, we evaluate the quantitati-

ve, objective retrieval performance of the proposed des-

Texture Recognition rate [%]

parameters 1-NN 3-NN 5-NN 7-NN

RGB histogram 79.11 64.33 50.89 38.33

RGB histogram & 78.56 66.89 56.78 46.67

Forier disks

RGB histogram & 81.67 67.56 55.33 44.78

Galloway & Dasarathy

Proposed fuzzy 92.89 88.33 83.33 77.56

index histogram

Table 1: Recognition rates for the generalist texture

image database Textures based on a k-Nearest Neigh-

bor algorithm (with k=1,3,5,7). The classical Fourier

energy distribution within concentrical disks [11] and

the Galloway [4] and Dasarathy [2] run-length matrix

parameters are computed for the texture description.

Texture Recognition rate [%]

parameters 1-NN 3-NN 5-NN 7-NN

RGB histogram 87.93 76.79 69.43 59.64

RGB histogram & 81.64 72.07 63.21 55.64

Forier disks

RGB histogram & 90.79 80.71 72.64 62.71

Galloway & Dasarathy

Proposed fuzzy 96.00 94.50 92.43 91.07

index histogram

Table 2: Recognition rates for the generalist texture

image database Ornament based on a k-Nearest Neigh-

bor algorithm (with k=1,3,5,7). The classical Fourier

energy distribution within concentrical disks [11] and

the Galloway [4] and Dasarathy [2] run-length matrix

parameters are computed for the texture description.

criptors by the classical precision-recall curves [3]. The

precision is the percent of correctly retrieved images wi-

thin the total number of retrieved images. The recall is

the percent of correctly retrieved images with respect to

the total number of relevant images within the databa-

se. The precision-recall curve plots the precision for all

the recall rates that can be obtained according to the

current image class population (C=9 for the Textures

image database and C=10 for the Ornament image da-

tabase), from 1/C to 1, in steps of 1/C. As shown in

�gures 5 and 6, the proposed description scheme provi-

des superior indexing performance.

5 CONCLUSIONS

The proposed approach is more e�ective in both recog-

nition and retrieval performance than classical descrip-

tors that combine separate color description (by color

histogram or average color) and texture description (by

spectral energy distribution or run-length matrix based

parameters). The fuzzy approach to color similarity and

color modeling provides the means to consider both co-

lor rankings and comparisons and the possible use of
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Figure 5: Precision-recall curves for the Textures ima-

ge database: proposed fuzzy description (upper contino-

us curve), RGB color histogram (circle-marked curve),

RGB color histogram and Fourier energy distribution

[11] (star-marked curve) and RGB color histogram and

runlenght parameters [4, 2] (triangle-marked curve).

a multiresolution representation (as the color similarity

function becomes wider, the overal e�ect is to consider

the image at a lower resolution). The fuzzy multireso-

lution approach will be further investigated.
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