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ABSTRACT

The use of computationally efficient substructures for
predictive FIR filters is proposed. When recursive
running-sum blocks are used as subfilters, only a small
number of multipliers are needed for predictor imple-
mentation. A design algorithm is described, based on
using time-domain constraints to define the composition
of the impulse response for least-squares optimization.
Polynomial and sinusoidal predictors are given as exam-
ples, and are compared with the direct form structures.

1 INTRODUCTION

By predictors we in this paper mean Finite Impulse Re-
sponse (FIR) filters which are capable of unbiased ex-
trapolation of certain signal classes, such as polynomi-
als and sinusoidal signals [1][2]. Such filters find ap-
plications, for example, in velocity measurements [3][4],
control systems [5], data smoothing [6], and hybrid non-
linear filters [7].

The impulse response of such predictors can be an-
alytically optimized to minimize the noise power gain
of the filter. Several approaches have been described to
reduce the multiplication rate required to achieve a cer-
tain noise attenuation. Recursive structures for generat-
ing the polynomial-shaped impulse response were pro-
posed by Campbell and Neuvo [8]. The Interpolated
FIR (IFIR) principle is also applicable to predictor de-
sign [9]. The use of prefilters was suggested by Laakso
and Ovaska [10], making it possible to enhance noise at-
tenuation, for example, with a simple recursive prefilter.
Recursive extension of the predictor itself is also pos-
sible, introducing poles in the transfer function which
is beneficial for noise suppression [11]. The poles are
typically located close to the unit circle, which causes
problems for finite word-length implementation.

In this paper, we describe a predictor design ap-
proach, where the unit delays of the direct-form FIR
structure are replaced by multiplierless substructures.
A long impulse response with favorable noise attenua-
tion properties is then achieved with only a few actual
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coefficients. The structure is described in Section 2 of
this paper. The design algorithm is explained in Sec-
tion 3 for polynomial predictors. Sine predictor design
is discussed in Section 4, and a structurally generalized
approach is presented in Section 5.

2 PREDICTORS WITH SUBSTRUCTURES

The idea of using a tapped cascade of identical subfilters
for constructing linear-phase FIR filters is well known
[12][13]. Predictors, on the other hand, are nonlinear-
phase filters, and the design objectives are typically
given as time-domain specifications together with noise
attenuation requirements. The time-domain specifica-
tion is of the form

z(n+p) = h(k)x(n—k), (1)

where p is the prediction step length and the h(k)’s are
the terms of the impulse response. Most often the design
goal is to minimize the noise gain,

NG =) |h(k)*. (2)

We propose to construct FIR predictors in the form
of a tapped cascaded interconnection of identical sub-
filters as shown in Fig. 1(a). There are K tap coeffi-
cients hg, k = 0,1,---, K. The structure of the recursive
running-sum based multiplierless subfilter R(z) is shown
in Fig. 1(b). The structure is recursive, but when im-
plemented with modulo arithmetic, such as two’s com-
plement arithmetic, it has the finite-length impulse re-
sponse r consisting of a zero followed by M ones [13].
Here the subfilters do not include any scaling coefhi-
cients, instead, the necessary scaling is included in the
tap coefficients hy. The impulse response of the overall
structure is of the form
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Figure 1: (a) The structure with subfilters. (b) Imple-
mentation of the subfilter R(z).

h(k) = ho + hyr(k) + hor(k) * r(k) + - --
thi (k) * r(k) * - (k) (3)

where * denotes convolution.

3 POLYNOMIAL PREDICTORS

Polynomial predictors are designed to satisfy the con-
straint (1) for Lth-order polynomials,

z(n) = ag+ ain + -+ +arn’. (4)

Optimum designs in the least-squares sense are obtained
as

h=P(P"P)"ldp, (5)
where P is a matrix of the form

1 0 0 .-

1 1 | |

P=-|1 2 4 ... N? ,
1 N N? ... NI

and
dp=1[1 —p(-p)® - (=p)" 1"

Such a solution has N + 1 coefficients, and it is required
that N > L. As suggested in [1], additional linear time-
domain constraints can be specified on the impulse re-
sponse. This possibility is exploited to specify how the
impulse response h = [h(0) k(1) --- h(N)] is composed
from the tap coefficients hz, &k = 0,1,---, K. However,
we cannot give more than N — L structural constraints,
in addition to the L 4 1 prediction constraints, to keep
the equation solvable. The only unconstrained term of
the impulse response (3) is h(0), as h(0) = hg, and
ho does not affect the rest of the terms. Furthermore,
h(1) = hq, but hy also affects the M — 1 next terms.
Thus, hq should be included in the structural constraints
as an input parameter but it should also be a free pa-
rameter to make optimization possible (for L > 0). This
dilemma can be solved by programming a loop where h1

is given as an stepped input parameter, and checking for
the situation where the hq of the optimum solution coin-
cides with the given hy. Thus both h(0) and h(1) are ef-
fectively unconstrained parameters in optimization, and
ramp predictors (L = 1) can be designed. For higher L,
the structure is modified as shown in Section 5.
Because of the typically small number of the tap coef-
ficients hy, variable step-size exhaustive grid search can
be used for finding the optimum. The search space is
limited by the targeted NG value. NG will be slightly
higher than NGep¢, which is the NG of an optimum
direct-form predictor with N + 1 coefficients. As a rule
of thumb, |h(7)| < v/2NGept, i = 0,1, -+, N. This sets
the limits for the search parameters ili, 1=1,2,---, K,
according to the composition of the impulse response.
The design algorithm can now be outlined as follows.
Step 1: Construct the matrix P and vector dp to include
both the prediction constraints and the impulse response
composition constraints.
Step 2: Find the limits of the search space for the coef-
ficients h;, ¢ = 1,2,---, K. Set NGpjy to a high initial
value. Set the error tolerance e and the coefficient step
sizes to ’practical’ values.
Step 3: Loop the parameters h; through the search
space. Replace the previous solution candidate by the
present candidate if NG < NG, and |iL1 — hy] < e
Update NGpijn when a better candidate is found.
Step 4: When a feasible solution has been found, refine
the optimum solution to desired accuracy by using a
smaller step size and error tolerance.

As an example, consider the case L = 1, K = 3,
M =8, N =24, and p = 1. In this case we have:
10 0 0 0 -+ 0
1 1 0 0 0 0
1 2 1 0 0 0
13 0 1 0 0
P=11 4 00 1 e
123 0 0 0 --- O
124 0 0 0 .-+ 1

dp =[1 —p hi+hy hi+2hy+hs hy+3hy+3hs -+ hs)™.

The amplitude responses of the optimum subfilter-based
predictor and the direct-form predictor are shown in Fig.
2. The respective noise gains are 0.2343 and 0.1700. The
direct-form structure requires 20 coefficients for compa-
rable NG. The new design needs only four multipliers.

4 SINE PREDICTORS

Predictors for sinusoidal signals are designed using the
single-frequency signal model

z(n) = Asin(won + @), (6)

where A and ¢ are arbitrary constants and wg is the
angular frequency. Subfilter-based sine predictors can
be designed using a similar procedure as for polynomial
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Figure 2: Amplitude responses of the subfilter-based
ramp predictor (solid line) and the optimum predictor

of length 25 (dash-dotted).

predictors, however, the subfilter should be selected so
that the frequency wq is located on the ’passband’ of the
subfilter.

4.1 Lowpass Case

The recursive running-sum subfilter of Fig. 1(b) has

a sinc function type amplitude response, with the first

zero located at 2w/M. The -10 dB cutoff frequency is

about 37/2M, which sets a practical upper limit for wo.
The constraint matrix and vector are of the form [1]

sin(0) cos(0)
sin(wg)  cos(wo)
g — | sin(2wo)  cos(2wo)

sin(Nwg) cos(Nwg)

and
ds = [sin(—pwo) cos(—pwo) -+~ ] .

The composition of the impulse is specified in a similar
way as for the polynomial predictors. As an example,
consider the case wg = 0.067, K = 3, M = 8§ N =
24, and p = 1. The structure is thus the same as in
the previous example. The amplitude responses of the
optimum subfilter-based predictor and the direct-form
predictor are shown in Fig. 3. The respective noise
gains are 0.0939 and 0.0872. The direct-form structure
requires 20 coefficients for comparable NG.

4.2 Bandpass Case

For higher frequencies, i.e., wg > 37/2M, the subfilter
needs to be modified so that it passes wg without too
much attenuation. Multiplierless subfilter implementa-
tions are still possible in many cases. As an example, we
design a predictor for wo = 0.4w, using a subfilter with
the impulse responser =[011 -1 —=111 —1 —1]. The
amplitude response of the resulting predictor is shown
in Fig. 4, together with the amplitude responses of the
corresponding optimum predictor and the subfilter.
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Figure 3: Amplitude responses of the subfilter-based
sine predictor (solid line) and the optimum predictor

of length 25 (dash-dotted).
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Figure 4: Amplitude responses of the subfilter-based
sine predictor (solid line) and the optimum predictor
of length 25 (dash-dotted). The respective noise gains
are 0.1397 and 0.0800. The amplitude response of the
subfilter R(z) is also shown (dashed), scaled to unity
peak gain.

5 A GENERALIZED STRUCTURE

From the predictor design point of view, the structure
of Fig. 1 is rather restricted, since only two prediction
constraints can be specified when using the proposed
semi-analytical design procedure. Prediction is there-
fore limited to ramp signals (L = 1) or single-frequency
sinusoids. A more flexible structure is needed for higher
order polynomials, multiple sinusoids, and combinations
thereof. Such a structure can be constructed as a hy-
brid of the direct-form structure and the subfilter-based
approach, as shown in Fig. 5. The first J subfilters
have been replaced by unit delays, which means that
there are no structural constraints on the coefficients hg
to hy, and the corresponding degrees of freedom can be
designated for prediction specifications.



R(2) R(2

Figure 5: The hybrid structure with subfilters.

Consider the following example. We wish to design
a one step-ahead predictor for wg = 0.067, while fully
suppressing the third harmonic frequency at w; = 0.187.
The design is carried out using J = 3, K = 5, and
M = 8. The two subfilters are of the basic running-sum
type of Fig. 1(b). Four degrees of freedom are needed
for the prediction constraints, as we need to specify one
step-ahead prediction for wg and zero output prediction
for w1, i.e., the predictor frequency response must have
a notch at wq. 16 additional constraints are given for
the terms of impulse response, specifying how the terms
h(4) to h(19) are composed of the coefficients hs and
hs. In this case, it is not necessary to test the candidate
designs for |hy — ha| < €, since there are enough degrees
of freedom to simply set the constraint h(4) = hs. No
constraints are given for h(0) to h(3) since obviously
h(O) = ho, h(l) = hl, h(2) = hz, and h(3) = h3. Thus,
only hy and hs are searched for numerically.

The amplitude responses of the resulting optimized
predictor and the running-sum subfilter are shown in
Fig. 6. The noise gain of the predictor is 0.1048.
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Figure 6: Amplitude responses of the predictor (solid
line) and the running-sum subfilter (dash-dotted).

6 CONCLUSIONS

The subfilter-based approach is well suitable for design-
ing computationally efficient predictors, since good noise
attenuation is achieved with a small number of multipli-
ers. The hybrid structure makes it possible to include
an arbitrary number of prediction specifications in the
design. The proposed semi-analytical design procedure
works reasonably well in typical cases. Better design

methods are needed for cases where the number of non-
trivial subfilters is large.
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