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ABSTRACT

The fractional interval is used to determine the interval
between the output sample and the previous input sample in
interpolation filters. In this paper, the1effects of the
quantization of this parameter are studied and the
wordlength is derived for different kind of interpolation
filters having anti-aliasing or anti-imaging properties.

1. INTRODUCTION

Fractional interpolation filters or fractional delay filters
are used in various digital signal processing applications to
evaluate sample values of a discrete-time signal at arbitrary
points between the existing samples [Laa96]. This paper
concentrates on the interpolation filters having one
continuous-valued input parameter µl which is called as the
fractional interval. This parameter is used to determine the
time interval between the interpolated output sample y(l)
and the previous input sample x(nl). In most of the
applications it is required that the fractional interval is
adjustable during the computation.

Historically, VLSI implementation of digital signal
processing algorithms has required fixed-point arithmetic for
the sake of cost, speed and power consumption, and it has
been important to use the fewest number of bits possible to
carry each signal in the system. The strong demand for
wired/wireless communication services, among others, calls
for low-cost high-volume IC solutions (ASIC or FPGA) that
can perform real-time operations using as few chips as
possible. Hence, specific designs that are to be implemented
using ASIC or FPGA need to be optimised in terms of
wordlength and architecture, in order to keep cost, size and
power consumption to a minimum.

In [Lop00], the effects of quantizing the fractional interval
have been studied in theory. In this paper, the effects of finite
wordlength representation of µ are further examined, with
special attention on the different requirements for different
kind of interpolation filters in terms of number of bits.
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2. QUANTIZING THE FRACTIONAL INTERVAL

In order to analyse the finite precision effects of the
fractional interval we shall make use of the hybrid
analog/digital model, illustrated in Fig. 1. Any discrete-time
interpolation filter can be obtained from a continuous-time
filter ha(t), that is, there is an underlying continuous-time
impulse response filter inherent to the interpolation process,
satisfying the following condition [Ves99]
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for k = -N/2,-N/2+1…N/2-1, where N is the filter length.
The impulse response of a discrete-time interpolation filter
can therefore be obtained by sampling the underlying ha(t)
at the desired instants, given by the fractional interval µ. Let
us define µq(l) as the quantized fractional interval, that is,
the fractional interval represented in finite precision format.
The quantized fractional interval can be expressed as
follows

µq(l) = B
lk

2 , with 0 ≤ kl ≤ 2B-1, (2)

where B is the number of bits. Thus, µq(l) has K=2B values
and it is assumed that these quantization levels are
uniformly spaced. Now the output of the hybrid
analog/digital model is given by
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Therefore, due to quantization, the filter response is
replaced by the quantized ))ˆ(( inla Tkh +µ . An example of

such an impulse response for a polynomial-based
interpolation filter is shown in Fig. 2 for B = 3.

y(l)x(n)
DAC ha(t)

Resample at instant
lTout =(n l +µ l)Tin

ya(t)

Fig.1. The hybrid analog/digital model for the interpolation filter.



As can be seen from Fig. 2, the impulse response of the
quantized filter is obtained first by sampling the impulse
response of the unquantized filter with the sampling interval
of Tin /K and then by using the zero-order hold (ZOH) to
reconstruct the continuous-time response. The effect of
quantization in the frequency domain is shown in Fig. 3 for
B = 3. The frequency response of the sampled filter has
images at the frequencies KFin and its multiplies. When
these images are attenuated by the ZOH, we end up with the
frequency response of the quantized interpolation filter.
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Fig. 2. Impulse response of the interpolation filter for
unquantized (dashed line) and quantized (solid line)

fractional interval, with B = 3.

0 2 4 6 8 10 12 14 16
−80

−70

−60

−50

−40

−30

−20

−10

0

M
ag

ni
tu

de
 in

 d
B

Frequency in F
in

Fig. 3. The frequency response of the example
interpolation filter when µl is quantized to B=3 bits.

The quantization of the fractional interval has several
effects in the frequency domain. First, the ZOH causes some
distortion to the passband of the interpolation filter, which
does not usually need any compensation in other filtering
stages. The most significant effect is caused by the
attenuated images in the vicinity of the frequencies nKFin

for n = 1, 2, 3, · · ·. These high frequency components, which
are called as quantization images, may fold into the
baseband when the reconstructed signal ya(t) is sampled to
get the output samples y(l). The level of these quantization
images are mainly affected by the number of bits, i.e., by
K = 2B and the passband edge of the interpolation filter. The
first quantization image has the highest value. The

maximum value of the quantization images denoted by maxÎ

can be approximated by
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where fp is the passband edge in Hz. Starting from Eq. (4)
we can determine approximately the influence of the
number of bits B and the input bandwidth, denoted by the
passband edge frequency fp on the amplitude of the
quantization images. Eq. (4) can be approximated as follows

maxÎ ≈ 20 log(fp/Fin) – 6.02·B (5)

From Eq. (5), where maxÎ is the maximum amplitude (or

minimum attenuation) required, we can obtain the minimum
value of B needed in our design as

B ≥ ( maxÎ - 20log(fp/Fin)) / 6.02 (6)

The key parameters effecting on the amplitude of the
quantization images are the input bandwidth and the number
of bits, shown in Fig. 4. As expected from Eq. (5), there is a
logarithmic relationship between the bandwidth and the
image amplitude. It also shows that a narrowband system
will have a better performance in terms of quantization
image attenuation for the same number of bits. As expected
from Eq. (5), increasing the value of B by one bit, the
attenuation is increased by about 6 dB. Thus, it would be
easy to attenuate the aliased components as much as we
desire by increasing B, but this parameter must be limited to
reduce hardware costs.

Fig. 4. Relationship between the input bandwidth and
the attenuation of the first quantization image.

3. FRACTIONAL INTERPOLATION CASE

In this section, we will study the impact of the presence
of interference signals on fractional interpolation filters
when quantizing the fractional interval. Figures 5(a) and (b)
illustrate the scenario when anti-imaging filters are used,
which is a common choice in the design of sampling rate
conversion to a higher output frequency. The disturbing
signals are shadowed, and the frequency response of
fractional interpolation filter is indicated with dashed line.
Figures 5(c) and (d) show the case when an anti-aliasing
filter is utilised. This latter filter sets harder requirements in
terms of a narrower transition band, and therefore their
implementation is more complex [Hen00].

In Fig. 5(b), the interference signals can fall into the
quantization images, and consequently, in order to
guarantee a proper attenuation of these undesired
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components, the amplitude of the quantization images must
match the specifications of the stopband attenuation. In
other words, the amplitude of the possible disturbing signals
has an impact on the choice of the number of quantization
bits for the fractional interval. This is because the
quantization images are generated in the replicas of the
passband and transition band regions, and in anti-imaging
filters there might be interferences in the transition band.

However, when an anti-aliasing filter is designed, as
depicted in Fig. 5(c) and 5(d), the possible disturbing
signals as well as their images fall into the stopband region,
and they are not affected by the appearance of the
quantization images. Consequently, regardless of the
amplitude of the interference signals, the attenuation of the
quantization images is only related to the required
attenuation of the replicas of the desired channel. Hence, the
interference signals do not have any effect when
dimensioning the wordlength of the fractional interval.
Although this is an advantage of the anti-aliasing filters,
anti-imaging filters are usually a better option due to their
lower complexity when performing an increasing of the
sampling rate. In the next section, we will study how the
interference signals affect when fractional decimation is
carried out using different implementations.

Fig.5. SRC with anti-imaging
precision of 2 bit; SRC with an

finite precision of 2 bits, an

Fig. 6. Input signal spectrum and the anti-aliasing filter defined in
terms of the (a) input and (b) output sampling interval.

4. FRACTIONAL DECIMATION CASE

When performing an increasing of the sample rate, both
anti-aliasing and anti-imaging approaches can be used. In
the previous section, effects of the quantization of µ in both
types of filters were analysed. In this section we will
concentrate on the reduction of the sample rate, or fractional
decimation. When the system must perform a reduction of
the sampling rate, the blocking signals must be attenuated
because they can be aliased to baseband. Hence, anti-
aliasing filters are needed.

As shown in Figure 6(a), if we intend to design such a
filter as an interpolation filter, for instance by means of the
Farrow structure, the transition band becomes very narrow,
and consequently the filter complexity is increased. A better
solution for this problem can be obtained if we can specify
the problem from the output frequency point of view. In this
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 approach, as long as the sampling rate is lower, the
transition band gets wider, and consequently, the filter
requirements are relaxed (see Figure 6(b), where the slope is
less steep), leading to a reduction in the complexity of the
system. In [Hen00] and [Bab01], two different
implementations of a new approach to generate efficiently
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anti-aliasing interpolation filters by means of the so-called
transposed Farrow structure are described. Here we will
analyse the quantization effects in this kind of filters.

When the fractional interval is defined as a function of
the output sampling interval Tout, which is the case of the
trasposed Farrow structure, the quantization images are now
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centered at multiples of the output sampling frequency Fout,
instead of multiples of Fin. This is illustrated in Figure 5 (e),
where a conversion factor of 0.71 has been considered. In
this case, an interference signal may fall into these
quantization images, and it will be aliased to baseband.
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Therefore, the amplitude response provided by these
quantization images must guarantee an acceptable
attenuation for such disturbing signals. As long as the level
of an interference signal can be much higher than the
desired signal, this could establish much higher
requirements for the attenuation of the quantization images,
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which in other words means that more bits are necessary to
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represent the fractional interval. In conclusion, when the
fractional interval is referred to the output time interval Tout,
the presence of strong blocking signals at the input of the
interpolator has an impact on the final wordlength of the
fractional interval.



5. BASIC EXAMPLE: MODIFIED AND
TRASPOSED FARROW STRUCTURE

This example illustrates the effects of quantization when
the interpolation filter is used for reducing the sampling rate
by a factor of 2.49. The input signal is composed of a
desired sinusoidal signal at 0.15Fin and a interference
located at 0.35 Fin. This interference signal is 30 dB
stronger than the desired baseband signal, and the
specifications are set such that the maximum signal aliased
to baseband must be 20 dB below the baseband signal.
Thus, an attenuation of 50 dB is required. The anti-aliasing
decimation filter is designed for both the modified Farrow
structure, as an example of interpolation filter working at
the input sampling rate, and transposed Farrow structure,
which is a filter defined in terms of the output sample rate.

The filter specs are: passband edge at 0.15Fin, stopband
edge at 0.35Fin, 50 dB of stopband attenuation and a
passband ripple of 0.01. With these specs, the filter
parameters for the modified Farrow structure are [Ves99]:
filter length N=14 and the degree of the interpolation M=4.

Now we perform this decimation with the transposed
structure. In this case, the filter specifications are given in
terms of the output sampling rate, which is 1/β=2.49 times
lower. Thus, the passband edge is 0.3735Fout, the stopband
edge is located at 0.8715Fout. With this specs, the designed
filter has a length of N=8 and the degree of interpolator is
M=3, which is a significant reduction of the complexity of
the system, compared to the modified Farrow structure.

The designed filters meet both the desired specifications
when µ is represented in high precision, with the desired
frequency component, located at the frequency 0.15/β, that
is, 0.3725, and some aliased components adequately
attenuated (below - 20 dB amplitude). The goal is to check
the number of bits needed to represent µ so that the aliased
components are below –20 dB. In theory, the filter designed
with the modified Farrow structure is an anti-aliasing filter
working at the input sampling rate, and the interferences do
not affect the required attenuation of the quantization
images, and 20 dB is enough to take care of the replicas of
the desired signal. Figure 7(a) shows the output of the
modified structure, with B=1 bit, which, as expected, is
already good enough.

On the contrary, as explained in Fig. 5(e), in the trasposed
Farrow structure the interferences can fall in the
quantization images, so their amplitude must be below -50
dB. From Eq. (6) we can see that B=7 bits are needed in
this case. Figures 7(b) and (c) illustrates the output of the
trasposed Farrow structure when µ is quantized to B=1 and
B=7 bits, respectively. By comparing Fig. 7(a) and (b) we
can see the different effect of the interference in these two
filters. Figure 7(c) confirms that 7 bits are sufficient.

6. CONCLUSIONS

In this paper, the quantization of the fractional interval
for different type of filters has been addressed. It was shown
that the requirements in terms of number of bits may vary
considerably depending on the type of filter designed.
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Fig. 7.The output spectrum for the modified Farrow structure for (a) B=1,
trasposed Farrow structure for (b) B=1, and (c) B=7 bits.
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