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ABSTRACT

We propose two different approaches for finding opti-
mum FIR polynomial predictive filters. The first re-
veals an important property of these filters and can
lead to a numerical solution that is of the size of the
number of constraints imposed instead of the size of
the filter. With the second method, using a different
parametrization of the filter coefficients, it is possible
to obtain closed form expressions for the optimum filter
coefficients and for the minimum output noise power, in
the general case. Previous approaches were successful in
providing closed forms expressions only for special cases.

1 INTRODUCTION AND BACKGROUND

The problem we are interested in can be described as fol-
lows. We are given sequentially observations x(n) with
x(n) = p(n) + w(n) where p(n) is a deterministic poly-
nomial signal of the form

p(n) = a0 + a1n + · · ·+ aM−1n
M−1, (1)

with unknown coefficients ai and w(n) is white noise
with zero mean and variance σ2

w. We would like to de-
sign a linear predictive filter that can estimate p(n) from
the past available observations x(n − 1), x(n − 2), . . ..
Such problems arise in video and image processing [1],
satellite communications [2], industrial electronics, in-
strumentation and measurements [3] and biomedical sig-
nal processing [5].

If we consider FIR filters of length L and denote by
h1, . . . , hL−1 the impulse response and by p̂(n) the out-
put of the filter then

p̂(n) =
L∑

j=1

hjx(n− j)

=
L∑

j=1

hjp(n− j) +
L∑

j=1

hjw(n− j).

As performance measure we consider the mean square
error E{[p̂(n) − p(n)]2} between the estimate p̂(n) and
and the desired signal p(n). We would therefore like to
select the coefficients in the MMSE sense.

Since the desired signal p(n) is deterministic, time
varying and tends to infinity, in order to be able to ob-
tain a measure that does not depend on time and does
not diverge, it is necessary to consider estimates p̂(n)
that are unbiased, that is,

E{p̂(n)} =
L∑

j=1

hjp(n− j) = p(n). (2)

In fact this condition is also equivalent to requiring the
estimate to be exact under zero noise power. It can be
shown [1], [5], that the constraint in (2) is equivalent to
the following system of linear equality constraints

L∑

j=1

hj = 1 (3)

L∑

j=1

hjj
k = 0, k = 1, . . . , M − 1. (4)

Furthermore, under (2) our performance measure takes
the simple form

E{[p̂(n)− p(n)]2} = E








L∑

j=1

hjw(n− j)




2




= σ2
w

L∑

j=1

h2
j . (5)

We can now define the optimization problem that will
determine the optimality of our FIR filter. As we said,
we are interested in the MMSE between p̂(n) and p(n),
under the constraint that E{p̂(n)} = p(n). This, from
(5), translates into

min
h1,...,hL

L∑

j=1

h2
j (6)

under constraints (3) and (4).
The optimization defined by (6), (3) and (4) has been

considered in [3], [5]. However here we propose two dif-
ferent approaches, that can lead to a better understand-
ing of the filter structure and provide closed form expres-
sions for the filter coefficients and the final MMSE.
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2 POLYNOMIAL STRUCTURE OF OPTI-
MUM FILTER COEFFICIENTS

In this section we are going to show an important prop-
erty of the filter coefficients. If this property is employed
in the computation of the optimum filter structure it re-
duces the size L linear system required to find the opti-
mum coefficients into a size M system. In view however
of the results of the next section, where we present closed
form expressions, the results of the present section are
mainly of qualitative interest.

Although the filter coefficients can lie anywhere in an
L-dimensional space we will show that the optimum ones
will necessarily lie inside a significantly smaller and well
defined linear subspace. More precisely we will show
that the optimum filter coefficients have a similar poly-
nomial structure as the deterministic signal p(n), that
is,

hk = f0 + f1k + · · ·+ fM−1k
M−1, k = 1, . . . , L. (7)

Note that this relation was used in [4], however without
any proof of its general validity. Before proving this
result, let us redefine our optimization problem using
matrix notation.

Let H = [h1 h2 · · · hL]t denote the filter coefficient
vector; EM = [1 0 · · · 0︸ ︷︷ ︸

M−1

]t and consider the following

(Vandermonde) matrix

VL,N =




1 1 1 · · · 1
1 2 22 · · · 2N−1

...
...

... · · · ...
1 L L2 · · · LN−1


 .

With the above definitions, the optimization problem
we like to solve becomes

min
H
‖H‖2, under Vt

L,MH = EM . (8)

Notice now that since the elements of the second col-
umn of VL,L are different the square matrix VL,L is in-
vertible. This suggests that any vector H can be written
as a linear combination of the L columns of VL,L. As
far as the optimum solution of the optimization problem
(8) is concerned we have the following theorem.

Theorem 1: The optimum filter coefficient vector Ho

that solves the constrained minimization problem in (8)
can be written as a linear combination of the columns of
VL,M and in particular has the form

Ho = VL,M (Vt
L,MVL,M )−1EM . (9)

Proof: The proof is interesting and simple. Let the
matrix VL,L = [V1 V2 · · · VL], with Vi, i = 1, . . . , L,
denoting the corresponding columns, be the orthonor-
malized version of VL,L obtained by orthonormalizing
successively the columns of VL,L. It is then clear that

the i-th column Vi of VL,L is a linear combination of the
first i columns of VL,L.

Any vector H can be written as a linear combination
of the columns of VL,L. Therefore let

H = VL,LF

where F = [f0 · · · fL−1]t. Since VL,L is orthonormal
we have that its columns Vi for i > M are orthogonal
to its columns Vj with j ≤ M and therefore orthogonal
to the matrix VL,M . This in return suggests that the
constraint can be written

Vt
L,MVL,LF = Vt

L,MVL,MFM = EM ,

where VL,M contains the first M columns of VL,L and
FM is a vector of length M containing the first M ele-
ments of F . More precisely we conclude that any vector
satisfying the constraint in (8), if it is expressed as a lin-
ear combination of the columns of VL,L, then its first M
elements must satisfy the above equation. This means
that this first part must always be the same and there-
fore necessarily equal to

FM = (Vt
L,MVL,M )−1EM .

The norm on the other hand of H, since VL,L is or-
thonormal, can be written as

‖H‖2 = ‖F‖2 ≥ ‖FM‖2,
with equality if and only if fi = 0, for i > M . From this
we conclude that the optimum Ho is a linear combina-
tion of the first M columns of VL,L or equivalently of
all columns of VL,M .

To find the final form of Ho, since now we know that
Ho = VL,MFo and Ho needs to satisfy the constraint in
(8), we conclude that Fo = (Vt

L,MVL,M )−1EM which
yields the Ho appearing in (9). This concludes the
proof.

We would like to stress once more that this result
basically reveals the polynomial structure (7) of the op-
timum filter and can also be used for the numerical com-
putation of the corresponding coefficients. In the next
section, however, following a different parametrization
of the filter coefficients we will be able to come up with
closed form expressions for the coefficients and the op-
timum output noise power (MMSE).

3 CLOSED FORM EXPRESSIONS

In order to be able to compute analytically the opti-
mum filter coefficients it is more convenient to employ
the transfer function of the filter and, as was stated pre-
viously, to use a different parametrization of the filter
coefficients. Specifically if h(z) is the transfer function
then it must have the form

h(z) = 1− (1− z−1)M


1 +

L−M∑

j=1

αjz
−j


 .
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Indeed we can see that h(z) is a polynomial of order
L in z−1 therefore it corresponds to a finite impulse
response of the form h0, h1, . . . , hL. Notice also that
limz→∞ h(z) = 0 therefore we conclude that h0 = 0,
corresponding to a one step ahead predictor. Finally the
filter coefficients satisfy the M constraints defined in (3)
and (4), because h(z)|z=1 = 1 and h(k)(z)|z=1 = 0, k =
1, . . . , M−1, where h(k)(z) denotes the k-th derivative of
h(z). Therefore the proposed transfer function belongs
to the FIR filter class we are interested in and has the
necessary degrees of freedom expressed by the L − M
parameters αi.

It is convenient at this point to introduce the following
function h̃(z)

h̃(z) = 1− h(z) = (1− z−1)M


1 +

L−M∑

j=1

αjz
−j




=

(
M∑

l=0

CM
l (−1)lz−l

)
1 +

L−M∑

j=1

αjz
−j


 (10)

where Ca
b denotes the binomial coefficient

Ca
b =

{ (
a
b

)
for a ≥ b ≥ 0

0 otherwise.

Notice that h̃(z) corresponds to the following impulse
response 1,−h1, . . . ,−hL. Since the first term is fixed
to one, this suggests that

‖H‖2 = ‖H̃‖2 − 1

where H̃ = [1 − h1 · · · − hL]t is the vector containing
the modified impulse response. We therefore conclude
that minimizing ‖H‖2 is equivalent to minimizing ‖H̃‖2.

Consider now the particular form of h̃(z) defined in
(10). Multiplication in the Z-transform domain corre-
sponds to convolution in the time domain, therefore we
can write

H̃ = T
[

1
A

]

where A = [α1 · · · αL−M ]t is the parameter vector and
T is a convolution matrix of dimensions (L + 1)× (L−
M + 1) of the form

T =




CM
0 0 · · · 0

−CM
1 CM

0 · · · · · ·
...

... · · · ...

(−1)MCM
M

... · · · ...

0 (−1)MCM
M · · · ...

...
... · · · (−1)MCM

M




.

If we form the norm of H̃, we obtain

‖H̃‖2 = [1 At]TtT
[

1
A

]
= [1 At]Q

[
1
A

]
,

where Q = TtT has dimensions (L−M+1)×(L−M+1),
it is symmetric, nonnegative definite and Toeplitz. The
last property is easy to see due to the convolution matrix
structure of T. If the first column of the matrix Q is
the vector [q0 q1 · · · qL−M ]t, then we have that

qk =
M∑

n=k

(−1)nCM
n (−1)n−kCM

n−k = (−1)kC2M
M−k

where we used the identities

b∑

k=0

Ca
kCc

b−k = Ca+c
b

and Ca
b = Ca

a−b. Due to the symmetric Toeplitz structure
of Q, it is clear that the first column defines completely
this matrix.

Solving now the minimization problem

δ = min
A

[1 At]Q
[

1
A

]
,

can be seen to be equivalent to solving the following
linear system of equations

Q
[

1
A

]
=

[
δ
0

]
(11)

As we can see (11) provides simultaneously the optimum
vector A and the minimum squared norm δ.

Since Q is symmetric Toeplitz this is a classical sys-
tem that can be solved by applying the Levinson al-
gorithm. In particular we recognize that our problem
corresponds to the “prediction” part of the Levinson
scheme. It is exactly this method we propose to exploit
to show the next theorem.

Theorem 2: The optimum coefficients αk are given by
the following formula

αk =
CM+k−1

M−1 CL−k
M

CL
M

, k = 1, . . . , L−M. (12)

Furthermore the corresponding MMSE, or minimum
output noise power, is equal to

MMSE = σ2
w

(
CL+M

M

CL
M

− 1

)
. (13)

Proof: The proof is slightly involved, we will therefore
only highlight its basic steps without presenting all de-
tails. We can prove our theorem using induction in the
size of the problem. Let us therefore define the problem
of size m. Denote with Qm+1 the size m + 1 upper-left
part of the Q matrix and with Am and δm the corre-
sponding optimum vector and power of the size m opti-
mization problem,

δm = min
Am

[1 At
m]Qm+1

[
1

Am

]
,
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which is equivalent to the linear system

Qm+1

[
1

Am

]
=

[
δm

0

]
,

then δ = δL−M and A = AL−M .
For the induction we will show the following general

formula for the optimum vector and the optimum power
of the size m problem. If αm

k , k = 1, . . . ,m, denote the
elements of the optimum vector Am then

αm
k =

CM+k−1
M−1 CM+m−k

M

CM+m
M

, k = 1, . . . ,m, (14)

whereas for the power δm we have

δm =
C2M+m

M

CM+m
M

. (15)

Relations (14) and (15) can be shown by induction
on the order m. Key point in the proof constitutes the
Levinson order recursion

Am =
[

Am−1

0

]
+ κm

[
Ām−1

1

]

δm = δm−1(1− κ2
m),

where Ām−1 denotes a vector with the same elements as
Am−1 but in reverse order and κm the reflection coeffi-
cient defined as

κm = −qm +
∑m−1

k=1 αm−1
k qm−k

δm−1
.

After some mathematical manipulation κm can be
shown to satisfy the following simple formula

κm =
M

M + m
.

It is in fact this latter expression that facilitates consid-
erably the proof of the induction. The desired formulas
of the theorem are obtained by substituting m = L−M
and remembering that ‖H‖2 = ‖H̃‖2−1. This concludes
the proof.

In Figure 1 we can see the normalized (with respect
to σ2

w) MMSE in db, as a function of M and filter length
L. We observe that for large filter lengths there exists
a constant relative difference in performance for filters
of the same length and different values of M . This is
true because one can show that for large L the MMSE
behaves as

MMSE ∼ σ2
w

M2

L
;

therefore ratios of MMSEs corresponding to the same L
depend only on the orders of the polynomials.
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Figure 1: Normalized MMSE in db for polynomial or-
ders M−1 = 0, . . . , 5 and filter lengths L = M, . . . , 100.

4 CONCLUSION

We have presented two methods for finding optimum
FIR polynomial predictive filters. The first reveals an
important qualitative structure of this filtering class
that can be used for an efficient numerical computation
of the optimum filter coefficients. The second, and most
interesting one, leads to closed form expressions for the
optimum filter coefficients and the final minimum out-
put noise power. It should be noted that existing results
containing closed form expressions consider only special
(small) polynomial orders. On the other hand existing
numerical solutions have complexity of the size of the fil-
ter length as compared to our method whose complexity
is of the size of the order of the polynomial. The latter
is usually significantly smaller than the former resulting
in a significant computational gain.
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