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ABSTRACT 
A new normalised LMF (XE-NLMF) algorithm is 
proposed for channel equalisation to improve the 
convergence speed and bit error rate performance. The 
analysis of the LMF algorithm’s initial convergence in 
the mean has facilitated the normalisation which is 
bounded by the error power and signal power. Hence, a 
combination of the signal power and error power, by 
means of mixing, is used to normalise the step size. The 
proposed normalisation improves the stability of the 
mean fourth cost function and achieves a faster 
convergence in both co-channel interference and white 
noise. The complexity of the normalised LMF algorithm 
is slightly higher than the NLMS algorithm but the 
convergence speed and bit error rate performance 
significantly outperform the NLMS algorithm.  
 
1. Introduction 
 

Adaptive channel equalisation is essential to a 
communication system to ensure the integrity of the 
received signal, which is corrupted by the intersymbol 
interference (ISI), co-channel interference (CCI) and 
additive white Gaussian noise (AWGN). Future digital 
mobile communications are likely to be a multi-user 
system shared over a common channel. As the number of 
users and data traffic increases, the CCI will increase and 
the NLMS based channel equalisation will be non-
optimum [2].  

The NLMS is the most popular algorithm, because 
of it simplicity and robustness in adaptive equalisation. 
Many offspring algorithms have evolved from the LMS 
algorithm, such as the Sign-LMS algorithm. However, the 
modifications to the correlation multipliers often degrade 
the performance [3]. Except the least mean fourth (LMF) 
algorithm, under non-Gaussian additive noise, where the 
LMF algorithm outperforms the LMS algorithm [1]. In 
this work, the CCI is regarded as sub-Gaussian noise.  

However, the statistical instability of LMF 
algorithm requires a smaller step size to ensure stable 
convergence, which will decelerate the convergence 
speed [5][10]. Recently, by means of switching and 
mixing the norm of cost functions, the LMMN [4] and 
CFA algorithms [6] have been designed to improve the 
convergence speed and the adaptation accuracy.  

In this work, a step size normalisation to the LMF 
algorithm is proposed to improve the stability and 
convergence speed. The proposed normalised LMF (XE-
NLMF) algorithm is applied to the problem of channel 
equalisation with CCI and AWGN, as shown in Figure 1.  

Section 2 discusses the mean and mean square 
weight error convergence of the LMF algorithm. Section 
3 analyses the initial stability of LMF algorithm, which is 
dependent upon the initial condition of error power. 
Simulation results in Section 4 show that the XE-NLMF 
algorithm significantly outperforms the NLMS and LMF 
algorithms in the presence of AWGN and CCI. Lastly, 
Section 5 states the conclusions made in this paper. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: A communication system affected by a 

dispersive channel (ISI), CCI and AWGN. 
  
2. Overview of LMF Algorithm 
 

Consider a time-invariant adaptive system 
identification structure. The LMF algorithm is obtained 
by applying the partial differentiation to each filter weight 
[1] and the recursive equation for LMF algorithm is 
updated as follows [1]: 
 

W(n+1) = W(n) + γe3(n)X(n),  (1) 
e(n) = d(n) - XT(n)W(n). 

 
Where, the desired signal is d(n) = XT(n)W*(n) + η(n). 
X(n) is the input vector, X(n) = [x(n), x(n-1), …, x(n-
N+1)]T and independent of the zero mean white noise, 
η(n). W*(n) is the unknown FIR filter weights and W(n) 
is the adaptive filter weight vectors, W(n) = [w(n), w(n-
1), …, w(n-N+1)]T, T represents the transpose of a vector 
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and N is the filter order. The cubic error in (1) is a non-
linear modification to the LMS algorithm. By defining 
the weight deviation error as V(n) = W(n) - W*(n), the 
different equation in the mean convergence of weight 
error is derived as: 
 

E{V(n+1)} = [I - 3γE{η2(n)}R]E{V(n)},  (2) 
 
where E{⋅}is the statistical expectation, I is a unity 
identity matrix and R = E{X(n)XT(n)}.  According to the 
analysis of the mean square weight error convergence in 
[1], a sufficient condition for convergence is satisfied 
when: 
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The condition in (3) is bounded by the covariance of 
E{x2(n)} and the 4th order moment (kurtosis) of the 
additive noise. Since the kurtosis of a sub-Gaussian signal 
is smaller than that of Gaussian signal, the LMF 
algorithm will therefore perform better in sub-Gaussian 
additive noise [1]. 
 
3. Normalised LMF Algorithm 
 

To facilitate the normalisation, the initial instability 
of the LMF algorithm is reassessed. The instability of 
LMF algorithm is dependent on the initial convergence 
and has been studied in [8]. Using the Gaussian moment 
factoring theorem [7] and without expanding the cubic 
error term in (1), the weight error difference equation is 
simplified to (see Appendix): 
 
E{V(n+1)} = [I-2γE{e2(n)}R ] 

E{V(n)}|||W(n)||<<||W*(n)||
 . (4) 

 
The difference equation in (4) is analogous to (2) and 
after convergence is reached the E{e2(n)} will be very 
closed to E{η2(n)}[7]. A general condition for (4) to hold 
is 
 

γ  < 
maxe λ2σ2

1 |||W(n)||<<||W*(n)||
.  (5) 

 
Where, λmax is the maximum eigenvalue of R and 2σ e  is 
the covariance of E{e2(n)}. ||⋅|| is the Euclidean norm and 
||W(n)|| << ||W*(n)|| represents the condition of the initial 
distance between ||W(n)|| and the optimum ||W*(n)||. Note 
that the step size in (5) is time-varying, where the error 
power, 2σ e , is large during the initial adaptation and 
becomes minimum after convergence is reached. Hence, 
the condition in (5) shows that the stability of the LMF 
algorithm depends on the initial condition, which is the 
initial 2σ e .  

Since the maximum bounded step size in (4) is a 
time-varying function, normalising the step size will gain 
a faster convergence speed. To normalise the LMF 
algorithm, γ should approximately equate to the second 
term in (4), E{e2(n)}R. Let the R = 2σ x (n)I, equation (4) 
can be rewritten as: 
 

E{V(n+1)} =[I -2γ 2σ e
2σ x I]E{V(n)}|||W(n)||<<||W*(n)||. (6) 

Since the estimation of 2σ e
2σ x I is not practically 

available, the following approximation is made:   
 

2σ e
2σ x I ≤ [ 2σ e  + 2σ x ]I.    (7) 

 
For inequality (7) to be valid, the conditions to be 
justified are  |σe| < 1 and |σx| < 1, which is valid as the 
norm of error power is always less than unity. A tighter 
condition for stability becomes: 
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1
ex + |||W(n)||<<||W*(n)||.  (8) 

 
Thus, the inequality in (7) facilitates the normalisation 
and we propose to normalise the step size as follows: 
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Where 2σ e  = eT(n)e(n) and 2σ x (n) = XT(n)X(n), the 
vector of e(n) = [e(n), e(n-1), …, e(n-N+1)]T. γxe is the 
new step size and δ is a small constant to avoid a 
numerical division problem.  The parameters λ1 and λ2 
are introduced as the mixed norm power to control the 
mixing between the signal power and error power, where 
λ1+λ2 = 1. A signal power normalisation, γ� (n) = 
1/(XT(n)X(n)), had been proposed in [9], but found to be 
non-optimum [5]. The recursive updating equation for the 
normalised LMF algorithm (XE-NLMF) is proposed as: 
 

W(n+1) = W(n) + γ� (n)e3(n)X(n).  (9) 
 
Applying the weight error deviation, the difference 
equation for the weight error is defined as follows: 
 

E{V(n+1) = [I - 3E{ γ� (n)}E{η2(n)}R ]E{V(n)},  (10) 
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For tr[R] = N 2σ x , then, a general condition for equation 
(11) to hold is 
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The error is usually larger during the initial adaptation 
and gradually decreases toward a minimum. Therefore, 
the signal power, 2σ x , will act as a threshold to avoid 
large step size when σe

2 converges to a minimum. The 
combination of λ1

2σ x  + λ2
2σ e  has the advantage of 

normalising the input signal power and an improved 
stability where the 2σ e  will dampen down the outlier 
distribution of e3(n) in the recursive updating equation of 
XE-NLMF algorithm. 
 
4. Simulation Results 
 

To study the performance of the XE-NLMF 
algorithm, channel equalisation under CCI and AWGN is 
considered, as shown in Figure 1. The NLMS algorithm 
is set up to benchmark the performance of the XE-NLMF 
algorithm: 
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A non-minimum phase channel with impulse 

responses of h1(n) = 1+0.2(n-1) and a CCI channel with 
impulse responses of h2(n) = β(1+0.4(n-1)) is considered 
for the transmitted binary sequences {+1,-1} of d1(n) and 
d2(n) that are mutually independent.  An equaliser of the 
order N = 8 is considered and with reference to the 
AWGN power, 2ση , the parameter of signal to noise ratio 
(SNR), signal to interference (SIR), can be calculated as, 
SNR = σs1

2/ση
2, SIR = σs1

2/σs2

2 and SINR = 

σs1
2/( 2

ησ +σs2

2). Here the σs1
2 and σs2

2 represent the 
observed signal power and the co-channel signal power 
respectively. By changing the factor β, the SIR can be 
varied accordingly. The convergence curves in MSE are 
averaged for 1000 independent simulation to ensure 
stability. The Mean Square Error (MSE) is calculated as 
MSE(dB) = 10log10(E{e2(n)}). 
 
Experiment 1. Channel Equalisation with AWGN. 
 

Consider SNR = 20dB and no co-channel 
interference, β = 0. The convergence curves in Figure 2 
show that the XE-NLMF algorithm converges faster than 
both the NLMS algorithm and LMF algorithms. The step 
size for NLMS is α = 0.3, which has a comparable steady 
state MSE to the XE-NLMF algorithm. To assure 
stability, the step size for LMF is γ = 0.06. Increasing the 
NLMS algorithm’s step size can increase the convergence 
speed, but it will degrade the steady state MSE, hence the 
XE-NLMF algorithm outperforms the NLMS algorithm 
in AWGN. The significant improvement in convergence 
speed demonstrates that the normalisation to LMF 
algorithm has improved the stability. Figure 3 shows the 
bit error rate performance where the XE-NLMF is 
slightly better than the NLMS algorithm. 
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Figure 2: Convergence curves under AWGN. 
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Figure 3: SIR=0dB. BER Performances in SNR. 
 
Experiment 2. Channel Equalisation with CCI. 
 

With the same set up as for Experiment 1, the 
algorithm are now tested with CCI of SIR = 15dB and 
AWGN of SNR = 20dB, SNIR = 14dB. The parameters 
used for XE-NLMF are γxe = 0.9, λ1 = 0.5. For the fastest 
convergence, the step size for the NLMS and LMF are 
0.3 and 0.06 respectively. The convergence curves are 
shown in Figure 4 that the XE-NLMF algorithm 
converges significantly faster than the NLMS and LMF 
algorithm. 

For the bit error rate results in SIR, the step size for 
XE-NLMF, NLMS and LMF are chosen to produce the 
best bit error rate performance and the AWGN is set at 
SNR=20dB. The results in Figure 5 show that the XE-
NLMF algorithm produces a better bit error rate 
performance than the NLMS and the LMF algorithms. In 
terms of CCI, the XE-NLMF achieves more improvement 
than in AWGN. 
 
5. Conclusions 

 
A step size normalisation to the LMF algorithm has 

been introduced, which uses the mixed norm of the signal 
power and error power to improve the stability and 
convergence speed. Meanwhile, the convergence in the 
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mean weight error has been analysed for the LMF 
algorithm and the initial instability is found to be 
dependent on the initial error power. 
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Figure 4: Convergence curves under CCI. 
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 Figure 5: SNR = 20dB; BER Performance in SIR. 
 

The simulation results show that the BER 
performance of the LMF is superior to the NLMS, 
however the convergence speed is slow. With the step 
size normalisation, the XE-NLMF algorithm achieves 
both fast convergence and better BER performance 
compared to the NLMS and LMF algorithms. With a 
small overhead complexity increase, the XE-NLMF 
algorithm can outperform the NLMS algorithm in both 
AWGN and CCI noise.  
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Appendix. 

It is assumed that the X(n) is correlated to e(n) 
during initial adaptation, E{x(n)e(n)} ≠ 0. The Gaussian 
moment factoring theorem [7][8] is used to simplify the 
higher order term that the x(n) and e(n) are Gaussian 
distributed, 

 

E{V(n+1)} = E{V(n)} + γE{e3(n)X(n)}. (A.1) 

Using the Gaussian moment factoring theorem, 

E{e3(n)X(n)} = 2[E{e2(n)}E{e(n)X(n)}], (A.2) 

and E{V(n+1)} = E{V(n)} + 2γ[E{e2(n)}E{X(n)e(n)}]. 

Since, e(n) = η(n) - XT(n)V(n), 

E{V(n+1)} =E{V(n)} 
+ 2γ[E{e2(n)}E{X(n)[η(n) - XT(n)V(n)]}]. (A.3) 

 
Follow the assumption that x(n) and η(n) are 
independent, then, (A.3) is simplifies to 
 
E{V(n+1)} = E{V(n)}  

- 2γE{e2(n)}E{X(n)XT(n)}E{V(n)},  (A.4) 
E{V(n+1)} = [ I  

- 2γE{e2(n)}R ]E{V(n)}|||W(n)||<<||W*(n)||.  (A.5) 

 
(A.5) represents the mean weight error difference 
equation during the initial adaptation.  
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