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ABSTRACT

We propose an algorithm to detect ruptures in a signal

by means of information criteria along with its applica-

tion to edge detection on grey-level images. Information

criteria are made of two terms : a likelihood term and

an original penalization factor. They enable us to �nd

in an optimal way autoregressive models and their num-

ber to model the signal. The model changes represent

the edges of the objects in the image.

1 INTRODUCTION

Let us consider a parameterized model characterized

by the probability density function (PDF) f (� j ��) in

which the "true" parameter vector �� and its dimen-

sion k�, called model order, are not known. The well-

known techniques such as maximum likelihood (ML)

allow the estimation of ��, when the order is known,

but the problem of order estimation remains more dif-

�cult. The ML principle generally leads to an over-

parameterization of the model. A penalization of the

log-likelihood can palliate this drawback. The most cur-

rent information criterion is Akaike's criterion AIC [1],

though it is not satisfactory: it improves the ML prin-

ciple but leads to a strict overparameterization of the

model order. AIC is based on the minimization of the

Kullback-Leibler information between f (� j ��) and the

PDF f (� j �k) speci�ed by the parameter vector �k with

dimension k. Hannan and Quinn's criterion [5] makes

a further improvement by an order estimation which is

convergent in probability. An original generalization of

the latter criterion based on stochastic complexity [7]

is introduced in [4]. It leads to criteria noted as '�.

These criteria ensure an almost sure convergence. The

behaviour of these criteria is compared with the classi-

cal strongly consistent BIC (Bayesian Information Cri-

terion) [8], also called MDL for Minimum Description

Length [6], on an edge detection problem in time series

under the a priori hypothesis of an autoregressive (AR)

modelisation.

In the following part, we sum up all the forms of the

di�erent information criteria mentioned above. In a sec-

ond part, we give their particular expression in the AR

case and we show how they behave on Monte-Carlo sim-

ulations. In the third part, given a signal which evolu-

tion corresponds to a succession of unknown models,

we seek to segment this signal in c blocks, each block

i; i = 1; :::; c being modelized by an AR model of order

ki. The matter is therefore to determine the number of

model changes c � 1 and their position, as well as the

optimal orders ki estimated by the criteria presented

above. The detection method proposed with AR mod-

els is an extension of classical techniques generally used

for gaussian mixture models (see [10]).

2 MODEL SELECTION CRITERIA

For model order selection, the most known criterion is

surely Akaike's criterion, written as follows:

AIC (k) = �2

NX
i=1

log f
�
Xi j �̂k

�
+ 2k (1)

where �̂k is the ML estimator for the unknown param-

eter �k based on the sample X1; :::; XN, and the order

choice is such that k̂ = argmin
k

AIC(k). Theoretical

research in the Akaike's criterion has helped to spec-

ify the asymptotic behaviour of AIC. Akaike's criterion

is then unsatisfactory since it asymptotically leads to a

strictly positive overparametrization probability of the

model order [9].

In order to palliate the inconsistency of Akaike's crite-

rion, G. Schwarz (1978) proposed a new criterion for an

exponential family founded on a bayesian justi�cation.

He suggested the BIC (Bayesian Information Criterion)

[8]:

BIC (k) = �2

NX
i=1

log f
�
Xi j �̂k

�
+ k logN (2)

In a di�erent way, J. Rissanen (1978) came up with an

equivalent criterion using a coding technique (minimis-

ing the codelength in relation to the observations) for a

parametrized density, which is referred as MDL (Min-

imum Description Length) principle. This criterion is

asymptotically convergent in that it helps in �nding



the appropriate model when N ! 1 (strong consis-

tency). Note that the latter criterion penalises more

stringently the log-likelihood as the number of observa-

tions increases in comparison with AIC.

A third criterion was introduced by E. J. Hannan and

B. G. Quinn [5] in the case of an autoregressive process.

It substitutes k log logN for the preceding penalty and

leads to convergence in probability of the order estima-

tor (weak consistency); This criterion is written as '

and stands as a compromise between AIC and BIC.

Finally, let us give A. El Matouat and M. Hallin's

generalisation [4] drawn on Rissanen's works [7] end-

ing up in a criterion written as '� in the general case

of parametrized PDF. For a sequence of observations

X1; : : : ; XN , the criterion '� is written:

'�(k) = �2

NX
i=1

log f(Xi j �̂k)+kN
� log logN; 0 < � < 1

(3)

We can observe that Hannan and Quinn's criterion '

is present in a more general form. Indead, as '� (k) �

' (k) leads to zero in probability when � does so, the '

criterion can be seen as a limit case of '� (� = 0).

Then, the general form of Information Criterion (IC)

can be summed up as:

IC (k) = �2 logML(k) + �(k)cN (4)

where ML(:) denotes the maximized likelihood of the

model of dimension k and �(k) denotes the number

of free parameters in the model we are considering.

The possible penalities are cN = logN for BIC, cN =

log logN for ' (Hannan and Quinn's criterion) and

cN = N� log logN; � 2 ]0; 1[ for '� . We can notice

that some authors introduce the MMDL criterion (for

Modi�ed MDL) without theoretical justi�cation. For

this criterion, cN = 5 logN .

3 EXPERIMENTAL COMPARISON ON AR

MODELS

Now, we propose to apply the several model selection

criteria mentioned in the preceding section to the es-

timation of the order of AR models. There are many

studies involving the traditional criteria AIC, BIC and

' in the AR model case [3, 11]. Let be a time series

X1; :::; XN modelized by an AR model of order k:
8<
:

Xt = �
kP

i=1

aiXt�i + et

E(et) = 0; E(eset) = �2e�st

where �st is the Kronecker's symbol and eN = e1; :::; eN
is a gaussian white noise process with variance �2e. Using

notations of part 1, �k = (a1 : : : ak)
t
. Omitting terms

that do not depend on k, it is well-known that the likeli-

hood term in (4) becomes N log b�2e , where b�e is the ML
estimate of �e. Thus, we obtain:

IC (k) = N log b�2e + cNk (5)

The selected order k̂ veri�es k̂ = argmin
k

IC(k). We

verify the criteria behaviour on synthetic signals using

Monte-Carlo simulations. The two chosen models for

signal synthesis are as follows1:

� AR(2) model: a1 = �0:55 and a2 = �0:05 ;

� AR(15) model: a1 = �0:50; a2 = �0:06; a15 =

�0:45 and ai = 0 for the remaining parameters.

The search for the order is repeated on 100 replications

of the experiment, and the tested orders range from 0 to

20. For N = 1000 observations and �e = 1, we obtain

curves averaged on 100 experiments (see Fig. 1).

(a) (b)

Figure 1: Averaged criteria values for the AR(15) model

(1(a)) and the AR(2) model (1(b))

Figure 1 clearly shows the best quality of the order se-

lection allowed by BIC and '�. Table 1 gives the fre-

quencies of the obtained orders, 0 � k � 20, by the

di�erent criteria for the AR(15) process.

4 EDGE DETECTION

Consider the signalX1; :::; XN. Let c be an a priori �xed

number of models (adjacent blocks), and let us consider

the following conditional mixture model:

ML(c) =

cY
i=1

f(Xti�1+1; :::; Xti j �̂i) (6)

where t0 = 0 and tc = N . The edges positions

ti; i = 1; :::; c�1 are estimated using a dynamic program-

ming algorithm described in [10]. For an AR model,

1These AR models are often considered in litterature, for in-
stance in [2, 11].



Table 1: Results for AR(15), �e = 1

N = 1000

order AIC BIC ' '0:2 '0:5

0 0 0 0 0 0

1 0 0 0 0 100

: : : : : : : : : : : : : : : : : :

15 50 82 49 84 0

16 9 5 9 3 0

17 9 7 7 7 0

18 12 3 14 4 0

19 14 3 15 2 0

�20 6 0 6 0 0

N = 10000

order AIC BIC ' '0:2 '0:5

0 0 0 0 0 0

1 0 0 0 0 0

: : : : : : : : : : : : : : : : : :

15 65 100 74 100 100

16 13 0 11 0 0

17 7 0 6 0 0

18 6 0 5 0 0

19 2 0 1 0 0

�20 7 0 3 0 0

f(Xti�1+1; :::; Xti j �̂i) = (2�eb�2i )�
n
i

2 where ni is the

length of block i and b�2i is the ML estimate of the pre-

diction error variance of the model with ki parameters.

Finally, the criteria to minimize are the following:

IC (c) = �2 logML(c) + �(c)cN (7)

and the optimal number of models is estimated by

ĉ = arg min
t1;:::;tc�1;k1;:::;kc;c

IC(c). From processing time

arguments, we chose to implement the following approx-

imation : ĉ = arg min
t1;:::;tc�1;k1=k̂1;:::;kc=k̂c;c

IC(c), where

the AR model orders bki; i = 1; :::; c are obtained by min-

imizing the IC given in (5) on each block. Thus, we

have : �(c) =
cP

i=1

bki + c � 1. Figure 2(a) presents a

synthetised image2. Figure 2(b) shows the behaviour

of the criteria given in (7) on a line of the original 256

grey-level image (Fig. 2(c)). The better minimum vi-

sualization of the criteria '� ; � = 0:3; 0:4; 0:5; justi�es

their bene�t.

Figure 3 shows the edges estimated by the several cri-

teria, the algorithmbeing repeated for each line. We can

notice that BIC and '�; � = 0:2; 0:5 allow us to obtain

edges in a precise way (good edge localization), avoiding

edge overdetection. AIC leads to edge overdetection.

Figure 4 shows a natural image (cross section of a

heart), and the corresponding edge detection by the pro-

2each line of the image is made of a AR(2) model and a AR(4)
model with di�erent prediction error variance

(a) (b)

(c)

Figure 2: number of edges detected by the di�erent cri-

teria (2(b)) for a line of the original image (2(c))

posed method, the algorithm being repeated for each

line and each column. A comparative study of the pro-

posed algorithm with classical edge detection operators

(Canny-Deriche, Sobel, Roberts, ...) shows the better

detections obtained by the proposed approach.

5 CONCLUSION

In this paper, we veri�ed the asymptotic behaviours of

three information criteria in the AR model case with

aim of edge detection on digital images, and we pro-

posed a new criterion to achieve this task. We showed

the good behaviour of BIC and '�; � � 0:5 for simu-

lated and real data when N is large enough. The ap-

proach that we propose can also be extended to more

complex models such as ARMA models or multivariate

AR processes (multi-spectral images or color images for

example). Finally, the criteria developped here can be

used in various mixture model contexts for classi�cation

tasks involving the EM algorithm.
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