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ABSTRACT

In this paper, we introduce a new analytical model for
the �-stable probability density function (p.d.f.). The
new model is based on a corollary of the mixing the-
orem for symmetric �-stable (S�S) random variables
(r.v.) [1] which states that a S�S r.v. can be expressed
as the product of a Gaussian r.v. and a positive-stable
r.v. We also extend this model to provide an analytical
approximation for a subclass of multivariate �-stable
p.d.f.s, namely the sub-Gaussian �-stable p.d.f.s. Simu-
lation results indicate the success of our technique. The
new analytical representation opens path to the applic-
ation of maximum likelihood and Bayesian techniques
for problems involving �-stable random variables. The
paper is concluded with the examples of possible applic-
ation areas.

1 INTRODUCTION

Recently, there has been great interest in �-stable dis-
tributions for modelling impulsive noise. This interest
has been motivated by the experimental evidence that
various real-life impulsive noise processes such as at-
mospheric noise can be successfully modelled with the
�-stable distribution [2] and by the generalised cent-
ral limit theorem which tells that the �-stable distribu-
tions are the only possible limits of the sum of in�nitely
many small processes possibly with in�nite variance [3].
Moreover, the Gaussian distribution is a special case of
�-stable distributions and they share many nice prop-
erties such as stability: �-stable random variables are
closed under addition. Finally, the �-stable distribution
family is parametrised in a very convenient way to cover
a wide range of impulsiveness and also skewness.
Despite being such an attractive model for impulsive

noise, the �-stable distribution family has received lim-
ited attention in the literature since there are no explicit
compact expressions for the probability density function
except for a few special cases. Therefore, the stable dis-
tributions are most conveniently represented by their
characteristic functions (which are related to the p.d.f.
through a Fourier transform):
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and �1 < � <1;  > 0; 0 < � � 2; �1 � � � 1. �, the
characteristic exponent, is a measure of the thickness of
the tails of the distribution. � is the symmetry para-

meter. � = 0 corresponds to a distribution that is sym-
metric around �, in which case the distribution is called
Symmetric �-Stable (S�S). � is the location parameter

and for S�S distributions it is the symmetry axis. ,
the dispersion, similar to the variance of the Gaussian
distribution, is a measure of the deviation around the
mean.

Given the characteristic function in Eq.(1), the �-
stable p.d.f. can be obtained by taking the inverse
Fourier transform of the characteristic function numer-
ically. Although for a large number of samples this
is an e�cient method, it does not provide an analytic
form and it is not suitable for real-time applications
due to the extensive numerical integrations involved.
Only in the cases of the Gaussian (� = 2), the Cauchy
(� = 1; � = 0) and the Pearson (� = 1=2; � = �1) dis-
tributions can the transform be carried out analytically
to obtain closed form expressions for the p.d.f. Other
than these cases, the �-stable p.d.f. can be expressed
only as in�nite power series expansions [4]:
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Asymptotic series are available for S�S density func-
tions with � > 1 [4], however, it was shown in [5] that
these asymptotic series expansions are good only in the
tails and the origin of the p.d.f. and deviate from the
actual p.d.f. for the intermediate values.

Tsihrintzis and Nikias suggest an alternative method
based on polynomial interpolation [5]. However, our
simulations have shown that the expansions calcu-
lated with this method are numerically unstable due



to signi�cant-bit cancellation caused by the presence
of terms with large amplitudes and opposite signs [6].
Ilow suggests using LePage series expansion instead [7],
however, it was shown by Janicki and Weron that the
convergence of LePage series is extremely slow [8].

In this paper, we introduce a new method, which is
numerically very stable, for obtaining analytic expres-
sions for some classes of �-stable p.d.f.s.

2 FINITE-MIXTURE OF GAUSSIANS AP-

PROXIMATION FOR �-STABLE P.D.F.S

2.1 Univariate Symmetric �-Stable Distribu-

tions

Our method is based on a corollary of the mixing prop-
erty of �-stable r.v.s, which states that any S�S r.v. can
be represented as the product of a Gaussian r.v. and a
positive stable r.v. [1]:

Theorem 1: (Scale Mixtures of Gaussians)

� Let X be distributed with the Gaussian dis-
tribution, X � N (0; 2x). Also let Y

be a positive stable random variable, Y �
S�z=2

�
 =

�
cos(��z

4
)
�2=�z

; � = �1; � = 0
�
and be

independent from X . Then,

Z = Y 1=2 X � S�z(x; 0; 0): (4)

Given that Z is a compound r.v., Z = Y 1=2X , we can
express the p.d.f. of Z in the following way:

fZ(z) =

Z 1

�1

fZjV (zjv) fV (v) J(z; v) dv (5)

where fZ(:) and fV (:) represent the p.d.f.s of the r.v.s
Z and V = Y 1=2 respectively and J(z; v) represents the
Jacobian of Z with respect to V . Considering that X is
distributed with the standard Gaussian distribution, for
a given realisation of V = v, fZjV (zjv) is conditionally
distributed with the Gaussian distribution and Eq. (5)
can be re-expressed as [9]
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It follows from Theorem 1 that Y = V 2 in Eq. (6) is

distributed as Y � S�z=2
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Probability density functions of Z that can be ex-
pressed as in Eq. (6) are called scale mixtures of normal
distributions; accordingly fV (v) is called a mixing func-

tion [9]. Eq. (6) can be sampled uniformly at discrete
points to obtain an approximate �nite mixture model
for an S�S p.d.f. with arbitrary parameters:
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where the term in the denominator comes from the nor-
malization to keep the p.d.f. a proper probability func-
tion. It should be noted that this analytic expression
for the S�S p.d.f. is only an approximation, since the
continuous integral was approximated by a �nite sum.
Therefore, Eq. (6) should be sampled at a large num-
ber of points for a good approximation. To reduce the
complexity of the model in Eq. (7), one might prefer to
use only a small number of components and to sample
Eq. (6) at a few points only. In this case, the approx-
imation is coarse and we suggest using the Expectation-
Maximization (EM) algorithm [10] to �ne tune the com-
ponents to obtain a better approximation.
Hence, our suggested algorithm can be summarized

as follows:

Finite-Mixture Approximation to S�S P.D.F.

1. Given the parameters (�; ; � = 0; �)
of the desired stable p.d.f., generate the
characteristic function of Y which is pos-
itive stable distributed with parameters�
�=2;  =

�
cos(��z

4
)
�2=�z

; � = �1; � = 0
�
.

2. Evaluate the positive stable p.d.f. fY (:) at N
equally spaced points taking the FFT of the
characteristic function generated above, where
N is the prespeci�ed number of components in
the mixture.

3. The mixing function is the p.d.f. of the ran-
dom variable V = Y 1=2, which is obtained by

fV (v) = 2vfY (v
2): (8)

4. Substitute the mixing function samples calcu-
lated by Eq. (8) in Eq. (7) as the coe�cients of
the Gaussian kernels to obtain an approximate
analytic expression for the �-stable p.d.f.

5. Use the mixing function samples as initial val-
ues of the coe�cients of the Gaussian ker-
nels and execute the expectation-maximization

(EM) algorithm [10] to �ne-tune the coe�-
cients.

2.2 Univariate Skewed �-Stable Distributions

Unfortunately, the mixing theorem for representing S�S
r.v.s as a product of a Gaussian r.v. and a positive stable
r.v. does not extend to the skewed �-stable p.d.f.s,
which is also clear from the observation that we can-
not express a unimodal non-symmetric function as the
summation of a number of unimodal symmetric func-
tions.

2.3 Multivariate �-Stable Distributions

Similar to the univariate case, multivariate stable dis-
tributions do not possess a compact analytic form for
their probability density functions. Moreover, unlike



the characteristic function of univariate �-stable distri-
butions, the characteristic function of the non-Gaussian
multivariate stable distributions do not have a simple
form as can be seen from:

�(t) =

8<
:

exp(jtT a� tTAt); if � = 2; (Gaussian)
exp(jtT a� R

S
jtT sj� m(ds) + j��(t));

if 0 < � < 2;
(9)
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S is the k-dimensional unit sphere, m(:) is a �nite Borel
measure on S and A is a positive semi-de�nite symmet-
ric matrix.
Unlike the Gaussian case, most of the properties of

univariate stable variables do not carry to the multivari-
ate stable vectors. One such property is the mixing
property.
Although, the mixing theorem is not valid for the gen-

eral multivariate stable distribution case, a very similar
relation exists for a subclass of multivariate stable dis-
tributions, namely the sub-Gaussian stable (�-SG) dis-
tributions, which are de�ned with their characteristic
function given as:

�(t) = exp(�1

2
(tTRt)�=2) (11)

where the matrix R is positive-de�nite and corresponds
to the covariance matrix of the underlying Gaussian
multivariate distribution. This relation can be stated
as follows [1]:

Theorem 2:

� If X � �-SG(R) then

X = �1=2G (12)

where � is a scalar positive �
2
-stable random vari-

able and G is a Gaussian random vector with mean
zero and covariance matrix R. � and G are inde-
pendent.

Theorem 2 suggests that a �nite-mixture of multivari-
ate Gaussians can be used to approximate the �-SG(R)
p.d.f. in a similar manner to the univariate case. In the
multivariate case, the main di�erence is that the Gaus-
sian components in the mixture are represented by their
covariance matrices which may be non-diagonal. The
mixture p.d.f. which determines the amplitudes of the
Gaussian mixture components is evaluated in exactly
the same way as the univariate case, that is, it is dis-
tributed as � � S�=2( = (cos ��

4
)2=�; � = �1; � = 0).

Then, in analogy to Eq. (6), the following integral can
be written for the p.d.f. of an �-SG(R) random vector,

this time employing multivariate Gaussian kernels in the
integral:

fZ(z) =
1p
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Z 1

�1

1

v

1

(2�)dim(z)=2det(R)

� exp(� 1

2v2
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where dim(:) stands for the dimension of the vector,
det(:) for the determinant and fV (v) is the mixing func-
tion which is the p.d.f. of �1=2.

Eq. (13) can be sampled uniformly at discrete points
to obtain an approximate �nite mixture model for a sub-
Gaussian �-stable p.d.f. with arbitrary parameters:
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As in the univariate case, this is only an approxim-
ation and when N is restricted to be small, one needs
to run the EM algorithm to �ne-tune the coe�cients
of the mixture model. In the multidimensional case,
however, EM algorithm is much slower than the one-
dimensional case and therefore the computational com-
plexity is much higher. It is therefore, very desirable to
convert the problem into a form that we can employ the
one-dimensional EM algorithm rather than the multi-
dimensional EM.

The covariance matrix of a multivariate Gaussian
p.d.f. can be easily diagonalised by a linear transform-
ation and the p.d.f. can be expressed as a product of
univariate Gaussian p.d.f.s. One is tempted to look for
such a decomposition for the multivariate �-stable case,
so that we can express each univariate �-stable p.d.f. in
the product as a mixture of Gaussians with our method
and end up with a mixture model for multivariate �-
stables. Unfortunately, this is not possible in general:
�rstly, the covariance matrix is not de�ned for non-
Gaussian �-stable r.v.s; secondly, although there exists
an analogue in the �-stable case which is the covari-
ation matrix, it does not uniquely determine the p.d.f.
Therefore, diagonalising the covariation matrix does not
necessarily imply independence and we cannot decom-
pose a multivariate �-stable p.d.f. into a product of
univariate �-stable p.d.f.s by a linear transformation.

3 SIMULATION RESULTS AND CONCLU-

SIONS

To demonstrate the success of our scale mixture of Gaus-
sians model for the S�S p.d.f. we provide here sim-
ulation results obtained for an �-stable p.d.f. with
parameters � = 1:0; � = 0;  = 1; � = 0 using the
mixture approximation (Fig. (2)) and the polynomial-
asymptotic series expansion (Fig. (1)). The actual
p.d.f.s calculated by directly taking the inverse FFT of
the characteristic functions are also provided in the same
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Figure 1: polynomial approximation for standard
S(1.0)S vs actual p.d.f.
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Figure 2: Gaussian mixtures approximation for stand-
ard S(1.0)S vs actual p.d.f.

graphs for comparison. For the mixtures approxima-
tion, only 10 Gaussian terms are used, similarly, for the
polynomial-asymptotic series approximation, a polyno-
mial of order 10 is used and only the �rst 10 terms of
Eq. (3) are taken.

Simulation results show that with a small number of
components it is possible to obtain very accurate con-
struction of the �-stable p.d.f. using the scale mix-
tures of Gaussians approximation while the polynomial-
asymptotic series approximation show imperfect �tting
at the origin and the tails of the �-stable p.d.f.s. It
has been observed that the asymptotic series expansion
always leads to poor approximation in the tails. Polyno-
mial �t is good only below a cut-o�, if this cut-o� point
is made bigger for better �t in the tails, the �t around
the origin is worsened.

It should be stressed that our algorithm has none of
the drawbacks of the Tsihrintzis and Nikias' method: It
does not require the predetermination of various para-
meters and it is numerically very stable. Moreover,
some techniques for the solution of some signal pro-
cessing problems for the case of noise modelled as �nite-
mixtures of Gaussians have been developed previously
and our model enables the signal processing problems
involving �-stable data to be addressed in the same
framework. Modelling �-stable p.d.f.s as scale mix-
tures of Gaussians also lends itself to the application of
popular signal processing techniques such as maximum-

likelihood estimation and Bayesian estimation in prob-
lems involving �-stable distributed noise. Examples of
such problems are:

� parameter estimation of AR or ARMA models with
�-stable innovations,

� Kalman �ltering where the process noise and/or the
observation noise are �-stable distributed,

� estimation of sinusoids in �-stable noise,

� direction of arrival estimation and bearing estima-
tion in �-stable noise,

� detection of signals in �-stable noise,

� the estimation of the parameters of the �-stable
distribution especially in the case of coloured data.

References

[1] G. Samorodnitsky and M. S. Taqqu, Stable Non-

Gaussian Random Processes, New York, NY:
Chapman& Hall, 1994.

[2] C. L. Nikias and M. Shao, Signal Processing with �-
Stable Distributions and Applications, John Wiley
& Sons, 1995.

[3] W. Feller, An Introduction to Probability Theory

and Its Applications, vol. II, John Wiley & Sons,
1966.

[4] H. Bergstr�om, \On some expansions of stable dis-
tribution functions," Ark. Math., vol. 2, pp. 375-
378, 1952.

[5] G. A. Tsihrintzis and C. L. Nikias, \Performance of
optimum and suboptimum receivers in the presence
of impulsive noise modeled as an �-stable process,"
IEEE Trans. Communications, vol. 43, no. 4, pp.
900-914, April 1995.

[6] E. E. Kuruo�glu, Signal Processing in �-Stable Noise

Environments: A Least Lp-Norm Approach, PhD
Thesis, University of Cambridge, 1998.

[7] J. Ilow, Signal Processing in �-Stable Noise Envir-

onments : Noise Modeling, Detection and Estima-

tion, PhD Thesis, University of Toronto, 1995.

[8] A. Janicki and A. Weron, Simulation and Chaotic

Behavior of �-Stable Stochastic Processes, Marcel
Dekker, New York, 1994.

[9] D. F. Andrews and C. L. Mallows, \Scale mixtures
of normal distributions," J. Royal Statistical Soci-

ety, Vol. B 36, pp. 99-102, 1974.

[10] E. J. Dempster, N. M. Laird, and D. B. Rubin,
\Maximum likelihood from incomplete data via EM
algorithm," Annals Royal Statistical Society, Vol.
39, pp. 1-38, Dec. 1977.


