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ABSTRACT

Acoustic echo cancellers are widely employed in tele-

conferencing systems to reduce the undesired echos re-

sulting from coupling between loudspeaker and micro-

phone. The single-channel case has been widely stud-

ied. Of particular recent interest is the stereophonic case

which is not di�cult to solve due to the strongly cor-

related two-channel inputs. In this paper we compare

the steady-state solutions of the Leaky eXtended LMS

(XLMS) algorithm with XLMS having inputs condi-

tioned by additional zero-memory non-linearities. Mod-

i�cation of the correlation matrix of the two channel-

inputs is analysed. We also describe a new con�gura-

tion for the zero-memory non-linearities which does not

impact upon sound quality whilst maintaining improved

algorithm convergence properties. Simulation results to

support the analyses of these two di�erent de-correlation

methods are also included, which suggest that for de-

terministic parameter settings the performance of the

Leaky XLMS algorithm is superior to the case where

a half-wave rectifying non-linearity is used. Moreover,

simulation results where time variations in the trans-

mission room are considered in order to represent more

realistic situations are given, which, on the other hand,

suggest that the performance of the XLMS with a sig-

nal conditioning method using an Half-Wave Recti�er

(HWR) is superior to that of the Leaky XLMS algo-

rithm.

1 INTRODUCTION

The fundamental problem of Stereophonic Acoustic

Echo Cancellation (SAEC) lies in the misalignment of

the �lter coe�cients due to the strongly correlated two

channel-inputs. This a�ects the convergence properties

of the direct implementation of the conventional LMS

type adaptive algorithms in SAEC. De-correlation of

the two channel-inputs without a�ecting stereophonic

perception is hence considered [1]. The eXtended LMS

(XLMS) algorithm [2] is viewed as an extended ver-

sion of the two-channel LMS algorithm which takes into

account the cross-correlation between the two channel-

inputs. Introducing a leakage factor in the update equa-

tion of the �lter tap weight vector of XLMS [3] gives a

similar, but improved e�ect to the direct addition of

noise to the input signal because the input signal is not

a�ected [4, 5]. Leakage has also been successful in chan-

nel equalisation [6] and ADPCM coders [7]. In this pa-

per, the e�ect of the leakage factor within the Leaky

XLMS algorithm is analysed in terms of modi�cation

to the correlation matrix of the two channel-inputs, and

likewise the modi�cation due to additional zero-memory

non-linearities [8] in the two channel-inputs is inves-

tigated. Simulation work is also included to compare

these two di�erent de-correlation methods, where both

deterministic and realistic situations are considered.

2 PROBLEM DEFINITION

The steady-state solution to the SAEC problem can be

written in the form:

Rwopt =

h
Rx1;x1 Rx1;x2
Rx2;x1 Rx2;x2

ih
w1

w2

i
= p =

h
pd;x1
pd;x2

i
(1)

where, R is the correlation matrix of the two channel-

inputs and Rxi;xj
; (i; j = 1; 2) are the correla-

tion sub-matrices of the original input vector xi =

(xi;1; xi;2; :::; xi;L)
T
(T denotes transpose) and xj . How-

ever, due to the correlation between x1 and x2, R may

be near to singular. Thus, a steepest descent type algo-

rithm used to �nd wopt will exhibit very slow conver-

gence properties. To overcome this, direct and indirect

methods have been proposed to modifyR to yield much

improved convergence.

3 STEADY STATE SOLUTION OF THE

XLMS ALGORITHM WITH A ZERO-

MEMORY NON-LINEARITY

In the recent paper by Benesty et al [8], the approach
is to introduce Half-Wave Recti�ers (HWRs) within

the path of the signals from the transmission room,

which, intuitively, broadens the input spectrum and

hence \whitens" the two channel-inputs, which aids de-

correlation. The modi�ed input to the XLMS algorithm

is given by:

~xi(n) = xi(n) + �f(xi); i = 1; 2;

= (1 +
�

2
)xi(n) +

�

2
jxi(n)j (2)

where � is a scalar variable which determines the

amount of the additional non-linearity and where f(x)
is a half-wave recti�er, other non-linearities are possible

but the HWR, signi�cantly, preserves the shape of the

input signal. The HWR is expressed as:

f(x) =
n

x if x � 0;
0 otherwise.

(3)

The resulting modi�ed input correlation matrix becomes

Rrect =

h
R ~x1; ~x1 R ~x1; ~x2
R ~x2; ~x1 R ~x2; ~x2

i
;



where R ~xi; ~xj
; (i; j = 1; 2) are the correlation sub-

matrices of the conditioned input vectors ~xi and ~xj .
It is assumed that x1 and x2 are zero-mean and jointly

Gaussian distributed, and Rjxij;jxjj denotes the matrix

E[ jxij � jx
T
j j ].

Finally, the new steady-state solution of the XLMS

algorithm with HWR signal conditioning is given by

Rrectwopt = prect; (4)

where

Rrect = (1 +
�

2

)
2

�R

+
�2

4

�

�
Rjx1j;jx1j Rjx1j;jx2j
Rjx2j;jx1j Rjx2j;jx2j

�
(5)

and

prect =

h
Rd; ~x1
Rd; ~x2

i
= (1 +

�

2
)p+

�

2

�
Rd;jx1j
Rd;jx2j

�
: (6)

4 STEADY-STATE SOLUTION WITH THE

LEAKY XLMS ALGORITHM

A second method to de-correlate the inputs is to apply

leakage in the XLMS algorithm. The �lter coe�cients

w1, and w2 at time index n+ 1 with the Leaky XLMS

algorithm are updated by:�
w1(n + 1)

w2(n + 1)

�
= (1� )

�
w1(n)
w2(n)

�
(7)

+�M�1

(n)

�
�(x1(n))
�(x2(n))

�
e(n);

in which the function �(�) is a transformation of the in-

put vector.  is the leakage factor and � is the learning

constant. The transformation �(�) is unit scaling in gen-
eral but could be the non-linearity de�ned in (2), and

then there would be no degradation of the transmission

signals. In the above equation,M�1

(n) is given as:

M
�1

(n) =
1

det(M )
�

�
p22(n) ��r12(n)
��r12(n) p11(n)

�
;

det(M ) = p11(n)p22(n)� �2r2
12
(n);

where � is a correlation coe�cient that scales the cross-

correlation by a variable amount and:

p11(n) = x1
T
(n)x1(n); p22(n) = x2

T
(n)x2(n);

r12(n) = x1
T
(n)x2(n):

Using the same assumption as in [4], we can write the

error e(n) and the desired response d(n) as:

e(n) = d(n)�

2X
i=1

wT
i (n)xi(n); (8)

d(n) =

2X
i=1

wT
i opt

xi(n) + �(n): (9)

Then, the optimum �lter coe�cients for the two chan-

nels, w1opt and w2opt, are given as the solution to the

Wiener-Hopf equation [9]:

R
leaky

�
w1opt

w2opt

�
=

h
pd;x1
pd;x2

i
; (10)

where pd;x1 and pd;x2 are the cross-correlation vectors

between the tap inputs of the �lter and the desired re-

sponse d(n). In order to facilitate the analysis, we as-

sume that the two channel-inputs are statistically sta-

tionary, then in steady-state we can have a constant

matrix �M
�1

forM
�1

(n) in the update Eqn. (7).

As time n ! 1, the expected vector w1
1

can be

written as:

w1

1

= E[w1(1)]

= E[(1� )w1(1) + a�(p22x1 � �r12x2)

�fd�w1

T
(1)x1 �w2

T
(1)x2g]; (11)

a = det( �M ):

Similarly, the expected vector w2
1

becomes:

w2
1

= E[w2(1)]

= E[(1� )w2(1) + a�(p11x2 � �r12x1)

�fd�w1
T
(1)x1 �w2

T
(1)x2g]: (12)

Eqns. (11) and (12) yield the relations:

(p22Rx1;x1 � �r12Rx2;x1 +


a�
I)W1

1

�(�r12Rx2;x2 � p22Rx1;x2)W2

1

= p22Rd;x1 � �r12Rd;x2 ;

(p11Rx2;x2 � �r12Rx1;x2 +


a�
I)w2

1

�(�r12Rx1;x1 � p11Rx2;x1)w1
1

= p11Rd;x2 � �r12Rd;x1 :

Finally, putting the above relations in matrix form, we

obtain

R0w1 =

h
p22 ��r12
��r12 p11

i
p = a � �M

�1

p; (13)

where,

R0
=

�
R0
11

R0
12

R0
21

R0
22

�
;W1

=

h
w1
1

w2
1

i
;

R0
11

= p22Rx1;x1 � �r12Rx2;x1 +


a�
I

R0
12

= �(�r12Rx2;x2 � p22Rx1;x2)

R0
21

= �(�r12Rx1;x1 � p11Rx2;x1)

R0
22

= p11Rx2;x2 � �r12Rx1;x2 +


a�
I

p =

h
Rd;x1
Rd;x2

i
:

Comparing Eqn. (13) with (1), R
leaky

is given as

R
leaky

=
1

a
�MR0: (14)

After simpli�cation, we obtain R
leaky

:

R
leaky

=�
Rx1;x1 + p11



a2�
I Rx1;x2 + �r12



a2�
I

Rx2;x1 + �r12


a2�
I Rx2;x2 + p22



a2�
I

�
: (15)

Finally, the new steady-state solution that the Leaky

XLMS algorithm will �nd is given by

R
leaky

wopt = p: (16)



5 SIMULATION RESULTS

5.1 DETERMINISTIC PARAMETER SET-

TINGS

For the deterministic parameter setting, the impulse re-

sponses from the source to each microphone, g1 and

g2, in the transmission room were respectively set as

[0:4 0:8 0:6] and [0:8 0:6 0:4]. These values were used to

generate the two channel-inputs from the source signal.

As assumed, the source input signal was generated by

Gaussian random noise with zero-mean. On the other

hand, the impulse responses, h1 and h2, in the receiving
room were respectively �xed as [0:5 0:4 0:3 0:2 0:1] and
[0:1 0:5 0:4 0:3 0:2]. In order to evaluate the misalign-

ment performance, the Weight Error Norm (WEN):

WEN = 10log(
kh� hoptk

2

2

khoptk
2

2

); (17)

is used, where the norm k�k
2

2
denotes the sum of squared

values of the vector argument. The WEN performance

for h1 and h2 are respectively shown in Figs. 2 and 3.

For the case where an HWR is used, the �lter coe�cients

are updated by the ordinary XLMS algorithm. Fig. 1

shows the Mean Squared Error (MSE) of the �lters.

Parameters for Figs. 1 - 3:

� H.W.R. + XLMS Algorithm/Standard XLMS Algo-
rithm: � = 0:95, � = 0:3, � = 0:3

� Leaky XLMS Algorithm: � = 0:95, � = 0:3,  = 0:005

5.2 REALISTIC PARAMETER SETTINGS

The room impulse responses in practical situations can

be modelled with a combination of exponentially decay-

ing and growing envelopes [10]. Moreover, the impulse

responses can be modulated with variations simulated

by a \random-walk" regression model.

To represent the impulse responses of the transmission

room, gi (i = 1; 2) and those of the receiving room, hi,
models based upon zero-mean Gaussian random vari-

ables modulated by exponentially decaying/growing en-

velopes are used. The �lter fi = [fi1; fi2; :::; fiL], is �xed
as:

fij =

�
[1� exp(�a � j)] � kvi(j) j = 1; 2; :::; p;

exp(�b � j) � kvi(j) j = p+ 1; p+ 2; :::; L
(18)

where a and b are positive scalar values to de�ne the

slope of the exponential function. For the simulation,

the �lter length L = 50 is chosen for both gi and

hi, where k is a positive scalar to determine the vari-

ance of fvi(j)g, and where vi(j) are independent identi-
cally distributed Gaussian random variables. The �l-

ter coe�cients in g2 are �xed in the form as g2 =

[g11 + e1; g12 + e2; :::; g1L + eL], where ej = g1j � w(j)

(w(j) are chosen from independent Gaussian distributed

random variables).

To simulate a more realistic situation, the impulse

response of the transmission room gi is modulated by a

\random-walk"regression model, and the coe�cients at

time index n+ 1 are updated by:

gi(n+ 1) = �gi(n) + �wi(n) + gi(0); (19)

where � and � are positive scalar values to determine

the variance of the uctuations in the �lter coe�cients.

In the simulation, the �lter coe�cients for both gi
and hi (i = 1; 2) are generated by (18) with a = 0:25

and b = 0:03, and only gi are modulated by (19) with

� = 0:1 and � = 0:05. Fig. 4 shows a segmented ERLE

performance comparison between XLMS, XLMS with

HWR signal conditioning, and XLMS algorithm with

a leakage factor, where independent Gaussian random

noise signals are used as the channel-inputs. In Fig. 5

and 6, comparisons of misalignment performance of h1
and h2 are respectively shown. The performance shown

is that averaged over �ve di�erent channel-inputs. In

Fig. 7 - 9, the performance comparison where a real

recorded utterance, \PRESENT ZOOS ARE RARELY

REACHED BY OFFICIAL TRANSPORTATION", is

used is shown. The utterance used is recorded by a male

speaker in a quiet room, sampled originally at 48KHz

and down-sampled to 8KHz. For the simulation stud-

ies using both the random noise and the real speech

as channel-inputs, the results are shown in the pres-

ence of noise in the echo-path in the receiving room at

SNR=30dB. The noise in the echo-path is also assumed

as an independent Gaussian random noise signal.

6 CONCLUSION

In this paper, analysis, with supporting simulations, of

the XLMS algorithm with leakage and with the intro-

duction of additional zero-memory non-linearities in the

two channel-inputs has been presented. Simulation re-

sults with more realistic parameter settings has also

been given. In the steady-state solution of the Leaky

XLMS, only the original correlation matrix R is arti-
�cially shifted by additive terms as given in Eqn. (15)

during the operation. In the method involving the non-

linearities, however, not only R is modi�ed but the

cross-correlation vector p, due to the underlying ab-

solute operation and the scaling factors in Eqns. (5)

and (6), which is considered to be particularly helpful for

the de-correlation of the channel-inputs. Interestingly,

the simulation results for the deterministic parameter

settings as in Fig. 2 and 3 show that the appropriate set-

ting of the leakage factor can improve the convergence

performance of XLMS in terms of the misalignment of

the �lter coe�cients in comparison with the additional

non-linearities. In the simulations for the realistic pa-

rameter settings where time-variations are considered

in the transmission room impulse responses, the per-

formance with the Leaky XLMS, however, degraded for

both the independent Gaussian random noise and the

real speech channel-inputs, but the performance of the

XLMS with HWR signal conditioning was superior to

both the standard XLMS and the Leaky XLMS algo-

rithm. Future works include the further investigation

of the practical situations and the development of novel

algorithms for SAEC.
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Figure 2: Misalignment in Filter 1
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Figure 3: Misalignment in Filter 2
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Figure 5: Misalignment in Filter 1
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Figure 6: Misalignment in Filter 2 | (Fig. 4 - 6)

Channel-Inputs: Independent Gaussian Random Noise

Signals With Zero-Mean: (1) | XLMS, (2) | XLMS

With Signal Conditioning with an HWR (� = 0:3), (3)
| Leaky XLMS ( = 0:0005)
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Figure 8: Misalignment in Filter 1
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Figure 9: Misalignment in Filter 2 | (Fig. 7 - 9)

Channel-Inputs: Real Speech Data | "PRESENT

ZOOS ARE RARELY REACHED BY OFFICIAL

TRANSPORTATION": (1) | XLMS, (2) | XLMS

With Signal Conditioning with an HWR (� = 0:3), (3)
| Leaky XLMS ( = 0:0005)


