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ABSTRACT

A new family of adaptive structures which employ �lter
banks or wavelets to decompose the input signal and
reduced-order adaptive �lters in the subbands is ap-
plied to the acoustic echo control problem. Structures
with sparse adaptive sub�lters and no down-sampling
of the subband signals, as well as structures with crit-
ical sampling of the subband signals, are investigated.
Both types of structures yield exact modeling of FIR
systems. Computer simulations are presented to illus-
trate the convergence behavior of the adaptive subband
structures investigated in the paper for acoustic echo
cancellation.

1 INTRODUCTION

Adaptive FIR �lters have been extensively used in
acoustic echo control, as reported in [1]-[3]. Due to the
nature of the problem, large order adaptive �lters are
usually required in order to cancel out a large amount
of echo contained in the received signal. In such ap-
plications, the conventional adaptive FIR algorithms
present several drawbacks, such as the large number
of operations needed for their implementation and slow
convergence. Alternative structures that make use of
transforms and �lter banks have been proposed [2]-[6]
with the objective of reducing the drawbacks described
above. In [4], a transform was applied to the input vec-
tor and sparse adaptive sub�lters were used in the sub-
bands. In [5],[6], analysis �lters (instead of transforms)
were used, resulting in the general structure of Fig. 1(a).
The better selectivity of the �lter banks when compared
to a transform-based bank can lead to signi�cant reduc-
tion in the convergence time for colored input signals.

The structure of Fig. 1(a) was believed until recently
of being able to implement only a subclass of FIR sys-
tems, due to the length of the �lter realized being larger
than the number of adaptive coe�cients [6]. In [7], it
was shown that by properly choosing the �lter bank and
the number of coe�cients of the adaptive sub�lters, the
structure of Fig. 1(a) becomes capable of modeling any
FIR system, with the introduction of a small delay which
is inherent to the �lter bank.

The results obtained for the structure of Fig. 1(a) can
be extended to the case where non-uniform �lter banks
or wavelets are used to decompose the input signal. The
adaptive sub�lters of the resulting structure present dif-
ferent lengths and sparsity factors. The coe�cients of
the sub�lters are adapted by an LMS-type algorithm,
where the step-size for each sub�lter is normalized by an
estimate of the power of the respective subband signal.
For colored input signals, such power normalization can
reduce signi�cantly the eigenvalue spread of the overall
auto-correlation matrix, resulting in better convergence
rates than the conventional LMS algorithm, specially for
large order �lters.
From the �lter bank adaptive structure with sparse

sub�lters, a new family of adaptive structures with crit-
ical sampling of the subband signals, which also yield
exact modeling of FIR systems, can be obtained [7].
The resulting structures present extra �lters between
the subbands, but such �lters are related to the direct-
path adaptive �lters, and do not need to be adapted
separately. Therefore, the computational complexity
is reduced and the adaptation speed is improved when
compared to the algorithms derived in [2].

Figure 1: Adaptive structure using an analysis �lter
bank and sparse sub�lters.

2 ADAPTIVE FILTER BANK STRUCTURE

WITH SPARSE FILTERS

Let us consider initially the structure of Fig. 1(a) with
two subbands (M = 2), which can be represented as in
Fig. 1(b) by making use of the polyphase matrix of the



analysis �lter bank [8], i.e.,

Hp(z) =

�
H0;0(z) H0;1(z)
H1;0(z) H1;1(z)

�
; (1)

where Hi;j(z) is the jth component of the type-1
polyphase decomposition of the analysis �lter Hi(z) =PNHi

n=0 hi(n)z
�n.

The transfer function implemented by the adaptive
structure of Fig. 1(b) is given by

H(z) =
�
G0(z2) G1(z2)

�
Hp(z

2)

�
1
z�1

�
: (2)

In a system identi�cation application, the coe�cients
of the sub�lters Gi(z

2) are adapted such as to model
an unknown FIR system, which will be denoted here
by P (z). The type-1 polyphase decomposition of the
transfer function of the unknown system is given by

P (z) = P0(z
2) + z�1P1(z

2) =

=
�
P0(z

2) P1(z
2)

� � 1
z�1

�
: (3)

From the two equations above, we observe that the sub-
band structure will model exactly the unknown FIR sys-
tem when

�
G0(z

2) G1(z
2)

�
Hp(z

2) =
�
P0(z

2) P1(z
2)

�
:

(4)
Such equality can not be achieved, since for adap-
tive sub�lters with K coe�cients and analysis �lters of
lengthNH the productsGi(z

2)Hi;j(z
2) will have lengths

2K +NH � 1, which are larger than the number of co-
e�cients 2K being adapted. However, if we allow the
introduction of a constant delay of � samples at the
output, we can have

�
G0(z

2) G1(z
2)
�
Hp(z

2) =
�
P0(z

2) P1(z
2)
�
z��; (5)

if

�
G0(z

2) G1(z
2)

�
=
�
P0(z

2) P1(z
2)

�
F p(z

2); (6)

such that F p(z
2)Hp(z

2) = z��I , where I is the 2 � 2
identity matrix. The matrices Hp(z) and F p(z) that
satisfy the above condition correspond to the polyphase
matrices of the analysis and synthesis �lter banks of a
perfect reconstruction multirate system. The polyphase
matrix of the synthesis bank

F p(z) =

�
F0;0(z) F1;0(z)
F0;1(z) F1;1(z)

�
(7)

is such that Fi;j(z) is the jth component of the type-2
polyphase decomposition of the synthesis �lter Fi(z) =PNFi

n=0 fi(n)z
�n [8].

Therefore, by using an analysis �lter bank which
yields perfect reconstruction and adaptive sub�lters of

su�cient order such that Eq. (6) can be achieved, the
structure of Fig. 1(a) implements exactly any FIR sys-
tem. It should be emphasized that in the adaptation
algorithm the delay introduced by the �lter banks must
be taken into account.
We can extend the two-channel structure for a mul-

tichannel tree structure, by implementing any of the
sparse adaptive sub�lters Gi(z

2) using a two-channel
adaptive subband structure. Particular cases of the
resulting �lter banks correspond to discrete wavelets
[8]. In this way, we generalize the two-channel sub-
band structure to an adaptive structure with any num-
ber of channels, where the adaptive sub�ltersmigth have
now di�erent sparsity factors Mi. The resulting multi-
channel adaptive structure is much more versatile than
the other transform-domain and frequency-domain algo-
rithms, since it allows the use of a number of subbands
di�erent from the number of coe�cients, frequency de-
composition of the input signals with di�erent frequency
bandwidths, and adaptive sub�lters of di�erent lengths
and sparsities for the di�erent subbands. The number
of adaptive coe�cients of each sub�lter Gi(z

Mi) should
be at least

Ki = bN=Mic+ bNFi=Mic+ 1; (8)

where N is the order of the unknown system, NFi is the
order of the synthesis �lter of the i-th band, and Mi is
the sparsity factor of the corresponding sub�lter.

2.1 Adaptation Algorithm

Denoting xi(n) the signal at the output of the ith anal-
ysis �lter, gi;k the k-th coe�cient of the sub�lter Gi(z)
and Ki the corresponding number of coe�cients, the
general form for the LMS adaptation algorithm that
minimizes the overall mean-square error e(n) is

gi;k(n) = gi;k(n� 1) + �i(n)e(n)xi(n�Mik); (9)

for i = 0; 1; � � � ;M � 1 and k = 0; 1; � � � ;Ki � 1, where
M is the number of subbands. The step-sizes are given
by

�i(n) =
�PKi�1

k=0 xi(n�Mik)2 + c
(10)

where c is a small constant which prevents the algo-
rithm from diverging when the power of xi(n) is very
small. The use of di�erent step-sizes in the adaptation
of the coe�cients of the di�erent sub�lters, according to
(10), increases signi�cantly the convergence speed of the
adaptive algorithm for colored input signals when com-
pared to the speed of the conventional LMS algorithm.

3 ADAPTIVE SUBBAND STRUCTURE

WITH CRITICAL SAMPLING

Now, by including maximally decimated perfect recon-
struction analysis and synthesis banks following each



sparse sub�lter in Fig. 1(a), moving the sparse sub-
�lters Gk(z

M ) to the right of the decimators (becoming
thus Gk(z) by the noble identity [8]), and assuming that
non-adjacent �lters of the analysis �lter bank have fre-
quency responses which do not overlap, the structure
of Fig. 2 is obtained. Observe that in the resulting
structure only M sub�lters need to be adapted, namely
G0(z); � � � ; GM�1(z), and that they operate at a rate
which is 1=M -th of the input rate.
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Figure 2: Adaptive subband structure with critical sub-
sampling.

3.1 Adaptation Algorithm

The major advantage of the subband structure of Fig.
2 is that, for an M -subband scheme, only M sub�lters
need to be adapted, as opposed to the overdetermined
method presented in [2], where 3M � 2 sub�lters are
adapted. Moreover, the structure of Fig. 2 presents
the advantage that the sub�lters are adapted separately,
as opposed to the nonoverdetermined method also de-
scribed in [2], which updates a single �lter and then
derives the coe�cients of the sub�lters.

A normalized LMS-type algorithm is used for updat-
ing the coe�cients of the sub�lters. Denoting Xi;j(m)
the vector containing the actual plus K � 1 past sam-
ples of the signal Xi;j at the output of the analysis �lter
Hi(z)Hj(z) after down-sampling (see Fig. 2),Gi(m) the
vector containing the coe�cients of the sub�lter Gi(z)
at iterationm, and K the number of coe�cients of each
sub�lter, the general form for the LMS adaptation al-
gorithm that minimizes the sum of the instantaneous
subband squared-errors is given by

Gk(m+ 1) = Gk(m) + �k(m)[Xk;k(m)Ek(m)

+Xk�1;k(m)Ek�1(m) +Xk;k+1(m)Ek+1(m)]; (11)

where the error signal Ek(m) is

Ek(m) = Dk(m��=M)� [Xk;k(m)TGk(m)

+Xk�1;k(m)TGk�1(m) +Xk;k+1(m)TGk+1(m)]: (12)

For the �rst and last subbands (k = 0 and k =M � 1)
one should consider X

�1;0 = 0 and XM�1;M = 0. The
step-sizes are made inversely proportional to the sum of
the powers of the signals involved in the adaptation of
the coe�cients, that is

�k(m)=
�

jXk;k(m)j2+jXk�1;k(m)j2+jXk;k+1(m)j2+c
:

(13)

4 COMPUTER SIMULATIONS

Computer simulations are presented in this section to
illustrate the convergence behavior of both types of sub-
band structures described in this paper for acoustic echo
cancelling applications. The tests were performed using
the measured impulse response of the echo path in an
automobile and speech signals sampled at a rate of 8
KHz. The echo path was modeled by a 256-length FIR
adaptive �lter (N=255).

4.1 Sparse Filter Bank Structure

The adaptive �lter bank structure with sparse sub�lters
was simulated with two, four, and eight subbands, and
with the analysis bank implemented by a tree-structure
with prototype �lters given by H(0)(z) = 1

8
(�1+2z�1+

6z�2+2z�3� z�4) and H(1)(z) = 1
2
(�1+ 2z�1 � z�2),

which leads to perfect reconstruction �lter banks. The
number of adaptive coe�cients in each sub�lter was set
according to Eq. (8). The step-size normalization of Eq.
(10) was implemented with � = 0:5 for all simulations.
Figure 3 presents the normalized Euclidean norm of

the di�erence between the adaptive weights and the
echo path impulse response for the normalized LMS al-
gorithm and for the sparse �lter bank structure with
M = 2, M = 4, and M = 8 subbands. We observe that
the convergence rate improves with the increase of the
number of subbands, as expected. However, the input-
output delay introduced by the structure also increases
(� = 2 for M = 2, � = 6 for M = 4, and � = 14
for M = 8), as well as its computational complexity.
Such increases are signi�cant only when the number of
subbands is very large or when more selective analysis
�lters are used. We have also performed simulations
with wavelet-type tree structures, where only the low-
pass subbands were further decomposed. The conver-
gence speed obtained using a wavelet was exactly the
same as that of the complete tree-structure, and the
computational complexity was smaller.

4.2 Critically Sampled Subband Structure

The adaptive subband structure of Fig. 2 was imple-
mented with two, four and eight subbands, and with
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Figure 3: Simulation results for the sparse �lter bank
structure.

perfect reconstruction cosine modulated analysis and
synthesis banks [8]. The orders of the prototype �lters
were NF = 23 for M = 2, NF = 47 for M = 4, and
NF = 127 for M = 8. The number of coe�cients of
each sub�lter was K = (N+NF +2)=M . The step-sizes
were normalized according to Eq. (13) with � = 1=1:5.

Figure 4 presents the MSE evolution for the critically
subband structures with M = 2, M = 4, and M = 8,
and for the normalized LMS algorithm. We observe that
the convergence speeds of the subband structure and of
the LMS algorithm are practically the same, due to the
adaptation at the lower rate in the subband structure.
The �nal MSE of the subband structure is limited by
the stopband attenuation of the analysis �lters when
M > 2, since we have assumed in the derivation of the
structure and of the adaptive algorithm that the fre-
quency responses of non-adjacent �lters do not overlap.
The main advantage of the critically sampled subband
structure is the savings in the computational complex-
ity, which is of the order of the number of subbandsM ,
forN large. However the delay introduced by this struc-
ture is larger than that of the sparse structure, and it
increases with the number of subbands and the order of
the analysis and synthesis �lters.

5 CONCLUSIONS

A new family of adaptive subband structures was ap-
plied to the acoustic echo cancellation problem. Simu-
lations with the adaptive subband structure with sparse
sub�lters have shown that a signi�cant improvement
can be obtained even when very simple �lter banks or
wavelets and few subbands are used. For the subband
structure with critical sampling, the convergence speed
of the adaptation algorithm is almost the same as that
of the full-band LMS algorithm, and it results in compu-
tational complexity reduction when implementing high-
order adaptive �lters. However, the increase in the num-
ber of subbands leads to an increase in the input-output
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Figure 4: Simulation results for the critically sampled
subband structure.

delay introduced by the �lter banks.
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