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ABSTRACT

This paper presents a three-dimensional motion esti-

mator for use in cases where we have noisy video se-

quences containing one moving object on a stationary

background. The motion estimator is to be used as part

of an image enhancing pre-processing step. A Paral-

lel Extended Kalman Filter (PEKF) developed by J. B.

Burl is at the heart of this motion estimator, together

with additional data mapping techniques for its expan-

sion to what is referred to as a Pseudo 3D motion esti-

mator. This motion estimator is shown with simulations

to have much potential for object motion estimation at

low image SNR levels, (< 5dB).

1 INTRODUCTION

A noise free video sequence with small levels of object

motion, has relatively high correlation in the temporal

direction. In contrast, with the presence of signi�cant

observation noise, such temporal correlation is reduced.

Space-invariant three-dimensional, (3-D), �lters can be

used, when there is no motion, for direct noise reduc-

tion without losing high spatial frequencies. However,

when a moving object is present, there remains strong

temporal correlation mostly along the trajectory of the

object. Thus, motion compensation is required if spatio

temporal �ltering is to be successful in preserving much

of the high spatial frequency information.

Optic ow [1], feature based [4], and cross correlation

based motion estimation techniques have been used to

estimate object motion. However, the disadvantages of

these techniques are: for optic ow, its noise sensitiv-

ity; for the feature based approaches, numerous post

processing steps are necessary for feature extraction;

and for cross correlation based techniques, the need for

interpolation techniques for reasonable sub-pixel accu-

racy, as well as the need for search techniques. The

objective is to overcome these limitations by produc-

ing a motion estimator which is robust to noise, whilst

maintaining low computational complexity. This paper,

presents a motion estimation algorithm that overcomes

some of the problems outlined above. Pseudo three-

dimensional motion can be estimated without the need

for feature extraction, di�erential methods, or the need

for search techniques. The new estimator presented is

referred to as a pseudo 3D motion estimator since the

true 3D motion parameters are not estimated. However,

motion compensation for 3D object motion can be ac-

complished provided that some motion constraints are

satis�ed. The noise robustness of the method is demon-

strated in simulations. The low computational complex-

ity and lack of heuristic methods needed as compared

to most feature based and correlation based techniques,

make the algorithm an attractive motion estimator.

2 THE PARALLEL EXTENDED KALMAN

FILTER STRUCTURE

The parallel extended Kalman �lter,[2], consists of a

parallel bank of third order EKF's operating on the

Fourier coe�cients of the image. These EKF's estimate

the actual Fourier coe�cients, (real and imaginary), of

the image along with a linear combination of the veloc-

ity components of the moving object, refered to as the

frequency - velocity product. Subsequently, a weighted

least squares estimate of this product is fed back into

the EKF's for the next iteration. The optimal estima-

tor for the image has a very simple parallel structure in

the limit as the velocity estimate approaches the actual

velocity.

One of the disadvantages of the PEKF technique, is

its limitation to the estimation of object motion con-

strained parallel to the image plane. Due to the Kalman

�lter versatility and robustness, slight rotational and

scaling, (motion perpendicular to the image plane), can

be modelled as object velocity noise. Unfortunately this

is not satisfactory for cases where this motion is substan-

tial, (rotation > 1 Degree, scaling > 5%, per frame),

since substantial errors are introduced in the 2-D trans-

lation estimation. Therefore, it is concluded that for

best results in object motion compensation and restora-

tion, the rotational velocity and scaling estimation of

the moving object is necessary. Since this technique

does not use feature correspondence, obtaining true 3-D

object motion is not straight forward, but a pseudo 3-D

object motion estimator can be obtained.



3 PSEUDO 3-D MOTION ESTIMATOR

The operation of the PEKF motion estimator, is based

on the linear shift theorem of Fourier transforms. The

exponential phase component is proportional to the shift

that took place, and this is the information used by

the EKF's in order to obtain the velocity information.

Based on this principle the rotation and scaling of the

object can be obtained. It must be noted that it is of

great importance to obtain invariance between the es-

timation of the 2-D translation, scaling and rotation of

the moving object. The 3-D pseudo motion estimator

algorithm presented here contains a rotation invariant

motion estimator. This implies that the object rota-

tional motion estimation is independent of all other mo-

tion. The scaling of the object although invariant to

2-D translational motion, is not invariant to rotational

motion, therefore 2-D rotational motion compensation

should preceed the estimation of scaling. Finally, the 2-

D translational motion estimator is variant to all other

types of motion and therefore must be used after both

compensation for 2-D rotation and scaling has taken

place. The result of this process is a 3-D pseudo mo-

tion estimator, where, if each motion speci�c estimator

is used in the order stated above, the resulting algo-

rithm can be used to estimate any 3-D motion with no

problems of convergence or a need to run the algorithm

iteratively as with most correlation based techniques.

Computational e�ciency and sub-pixel accuracies, are

merits of the use of the PEKF structure. This Pseudo

3-D motion estimator is shown in Fig. 1.

Figure 1: Pseudo 3-D Motion Estimator Structure

3.1 The 2-D Rotational Motion Estimator

In this section, the estimation of 2-D rotational motion,

(rotation parallel to the image plane), will be consid-

ered. It must be noted that 2-D translation is present,

but no scaling is assumed at this point. The presence

of translation is to highlight the invariant property of

the estimator. Assume that f2(x; y) is a translated and

rotated replica of f1(x; y) with translation (u0; v0) and

rotation �0, then,

f2(x; y) = f1
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Now, taking the 2-D DFT of the translated and rotated

image, equation (1), and assuming a square image then,

F ff2(x; y)g [�x; �y] = F1(�u; �v)e
�2j�m(u0�u+v0�v)=M

F2 (�x; �y) = M1(�u; �v)e
j(�1(�u;�v)�2�m(u0�u+v0�v)=M)

where�
�u
�v

�
=

�
cos(�0) sin(�0)

�sin(�0) cos(�0)

� �
�x
�y

�
(2)

From equation (2), it can be seen that the magnitudes

of the DFTs of the two images, f1(x; y) and f2(x; y) are

translation invariant since the magnitude components

are not related to u0 and v0 in any way. This has great

asset to the principle of rotational motion estimation,

since the rotation of the magnitude of the image spec-

tra is equivalent to the rotation of the object in the spa-

tial domain. This helps avoid the need to determine the

object centre about which the object is rotating. Also,

since we are assuming constant rotational and trans-

lational motion, it can be shown [3] that the rotation

centre about which the object is rotating, is irrelevant.

Thus, whether the object is rotating about an arbitrary

point or about its centre, the rotation angle estimation

is the same. In order to use the PEKF to obtain a

rotational motion estimate it is necessary to map this

rotated spectrum such that any rotation will appear as

a translation. This translation can then be estimated

with the PEKF and hence obtain a result, which is pro-

portional to the rotation of the object. Such a mapping

can be obtained with a polar co-ordinate representation

of the moving object magnitude spectrum as shown in

equation (3),

M1(�;�) = M2(�;�� �0) (3)

where � and � are the magnitude and phase of the polar

mapping respectively.

3.2 The 1-D Scaling estimator

Scaling of an object can be considered as the third trans-

lation in the 3-D motion of an object. At this point the

scaling is assumed to be uniform, meaning that the scal-

ing of the object in both the x and y directions, (hor-

izontal and vertical), will be equal. This is consistent

with the object motion containing no rotational motion

into the frame, (the remaining two degrees of freedom in

3-D object motion). A similar approach in solving this

motion will be used as with the 2-D rotational motion.

In this case consider that f1 is the scaled replica of f2



with factors (sx; sy) for the horizontal and vertical di-

rections respectively. According to the Fourier scaling

property, the Fourier transforms of f1 and f2 are related

by,

F1(�; �) =
F2(�=sx; �=sy)

jsxsy j
(4)

Ignoring the multiplication factor, and assuming that

sx = sy = s, then, by taking the magnitude of equation

(4) and polar mapping it, the result of this would be

represented mathematically by,

M1(�1;�1) =M2(�1=s;�2) (5)

From equation (5) it is shown that, any uniform scaling

of the object will result in the scaling of the magnitude

axis of the polar mapped magnitude of the image DFT.

It is important to note that, the rotation axis is not

a�ected by this scaling. To use the PEKF for the esti-

mation of the image uniform scaling parameter s, this

polar magnitude of the polar mapped image must be re-

mapped such that the scaling appears as a shift. This

is accomplished with the logarithmic property as shown

below,

M1(log�(�1);�1) =M2(log�(�1) � log�(s);�2) (6)

and substituting log�(�1) with � and log�(s) with s0
then,

M1(�;�1) = M2(� � s0;�1) (7)

where, the base of the logarithm, �, is such that it sets

the polar magnitude axis length, e.g. if � = 1:0386 and

the image size was originally 128 x 128 pixels then the

resulting mapped image size would still be 128 x 128.

Other values may be used to improves the sub-pixel es-

timation accuracy if required. From this log-polar map-

ping technique, a uniform scaling motion estimation al-

gorithm is obtained whos state model has the form,

M1(�;�) = M2(� � s0;���0) (8)

where, s0 and �0 are the uniform scaling and 2-D rota-

tion angle respectively, to be estimated using the PEKF.

It is now possible to obtain the 3-D translational motion

of the moving object as well as its 2-D rotational motion.

3.3 Pseudo 3-D Rotation

So far, estimation of 3-D translational motion is possi-

ble, as well as 2-D rotational motion. However, for the

development of this Pseudo 3-D rotation motion estima-

tor, some assumptions are necessary. Firstly, the object

motion in the rotational directions which are not paral-

lel to the image plane are small. This can be assumed

for vehicles, since this motion is consistent with chang-

ing the vehicles direction which cannot be substantial

between frames. Secondly, the object is assumed to be

at a considerable distance away from the viewing im-

age plane, in order to limit the e�ects of perspective

projection, and therefore it can be assumed that a par-

allel projection viewing model can be used. These two

assumptions make it possible to estimate a measure of

the two remaining rotational motions. Since any rota-

tion into the image frame has the e�ect of directional

scaling of the viewed object, by simply considering the

object change in scale in both the horizontal and verti-

cal directions, some information on these rotations can

be made and eventually compensate for it in the image

enhancement step. This is why the method is called

a 3-D pseudo motion estimator, since it will not give

the actual 3-D motion parameters of the object motion

but some partial information of this motion. The state

model is very similar to the previous two stated, with

the only change being that the magnitude of the image

DFT is re-mapped to a log-log plane. This, as with the

uniform scaling, results in an object motion state model

as shown in equation (9),

M1(log�(�); log�(�)) = M2(log�(�) � log�(sx);

log�(�)� log�(sy)) (9)

or

M1(sx; sy) =M2(sx � sx0; sy � sy0) (10)

where, sx0 and sy0 are the directional scaling parame-

ters to be estimated by the PEKF algorithm. In this

case, directional scaling and 2-D rotational motion are

not invariant to each other, and will cause errors in the

estimation of the 2-D rotational motion, and vice versa.

It is apparent though, that scaling is much more sensi-

tive to rotational motion as compared with the rotation

estimates to directional scaling. Therefore, it can be as-

sumed that rotational motion is approximately invariant

to directional scaling.

4 MOTION ESTIMATOR RESULTS

Finally, a pseudo 3-D motion estimator is obtained. The

order in which each estimator is executed is important

to the convergence of this algorithm. It has been de-

termined that 2-D rotational motion estimation is ap-

proximately invariant to all other motion, and therefore

should be used to compensate for the 2-D rotational

motion of the moving object, and then in turn direc-

tional scaling estimation can take place. Finally, after

compensation for directional scaling and 2-D rotation,

translational motion estimation is possible. Some pre-

processing steps are however necessary for the correct

operation of this motion estimator. The 2D shift matrix

in the state equation of the PEKF, must be circulant [2].

This is the case when the object is fully contained in the

image boundaries. However, once the polar and log-log

mappings have taken place this is no longer true. There-

fore, some pre-processing is required, which in this case

is a cropping step. This step ensures that no moving

object information has contact with the image bound-

ary, therefore maintaining the circulant property of this



matrix. However, in the case where image data does

have contact with the boundary, only minor errors will

be observed according to numerical analysis performed

by Burl for the PEKF. The 3-D pseudo rotational mo-

tion or directional scaling motion estimator, is tested

with the use of an arti�cial input sequence of a mov-

ing square on a black background. Image noise levels of

10dB SNR are demonstrated, where the dotted line rep-

resents the true object motion. The number of Fourier

components used for the estimation process are, for ro-

tational, directional scaling and translational motion, 4,

4, and 2 components respectively.

5 CONCLUSIONS

From these simulations, the directional scaling motion

estimation performance of the algorithm can be seen to

be independent of the level of translation present and,

to a certain degree, independent of the rotation present.

The e�ects of directional scaling on the 2-D rotation

estimation can also be noticed, as well as the biased

results obtained for the translational motion. The er-

rors observed in these estimates, are largely dependent

on the motion compensation performed. These errors

can be minimised as the image size increases, and im-

proved motion compensation steps are considered. Fur-

ther work to be completed are, improvements on the

thresholding and cropping step, and the development of

a stationary background removal algorithm. This pre-

processing step is required such that the PEKF motion

estimator result in accurate motion estimates, [3]. Also

extensive tests of this motion estimation method on var-

ious real video sequences containing vehicle motion will

be performed, for its validation as a practical method

for motion compensation of vehicle type motion.
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