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ABSTRACT

The aim of our work is to realize the implementation

of a real-time image rotation on FPGA's board. The

method we used is based on a B-spline interpolator. The

integration capicity of FPGAs is relatively weak, so the

di�culty in this problem is to determine the right cod-

ing of the rotation �lter while keeping a good accuracy

on �ltering outpût. In this article, we remind a few de�-

nitions about B-spline functions and we present how we

use B-spline interpolation for the image rotation prob-

lem. Then, we describe the way we calculate probability

density function of the output error in order to deter-

mine the �lter data coding.

1 B-SPLINE FUNCTION

1.1 Introduction

A B-spline is a continous function, noted Bn(x), conti-

nously derivable up to the (n � 1)th order, polynomial

of degree n and de�ned by pieces [1]-[2].

A B-spline function is de�ned by the recursive equa-

tion:

Bn(x) = Bn�1(x) �B0(x) (1)

where B0(x) is the B-spline of order 0 de�ned by:

B0(x) =

�
1 pour � 0; 5 < x < 0; 5

0 sinon
(2)

So we can deduce the function:

Bp(x) =

p+1X
j=0

C
j
p+1(x+

p+ 1

2
� j)p:u(x+

p+ 1

2
� j)

(3)

with u(x), the Heaviside's function

and Cp
n = n!

(n�p)!:p!

1.2 Interpolation

With a B-spline of the third order, we approximate the

grey scale s(k) by :

s(x) =
X
j

CjB3(x� j) (4)

For x = k, k � Z, we have:

s(k) =
X
j

CjB3(k � j) (5)

We know the sequence s(k) and also the values of

B3(k � j) (formula 3 ). So interpolate the signal s(k)

consists in determining the weighting factors Cj of the

B-spline function.

With (4), we can deduce that:

s(k) =
1

6
�Ck�1 +

4

6
�Ck +

1

6
�Ck+1 (6)

After a Z-transform, we obtain:

C(z) =
6

z�1 + 4 + z
: s(z) (7)

The calculation of the weighting factors Ck can also be

done by using a non causal recursive �lter.

1.3 Application of B-spline interpolation :

translation by a non entire value

In the next paragraph, we will need to realize transla-

tions by a non entire value. We make such translations

by using the following formula :

s(k ��) =
X
j

CjB3(k ��� j) (8)

Where � is the non entire translation value to apply on

the signal s(k).
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2 IMAGE ROTATION

Let R(�) be the rotation matrix :

R(�) =

�
cos(�) � sin(�)

sin(�) cos(�)

�
(9)

A simple way to realize an image rotation is to

factorize the rotation matrix into a sequence of one-

dimensional transformations along the x and y axis. To

solve this problem, a factorization of the rotation matrix

has been proposed by several authors [3,4,5]:

R(�) = A : B : A (10)

with
A =

�
1 � tan(�=2)

0 1

�
(11)

and
B =

�
1 0

sin(�) 1

�
(12)

The A and B matrices are translation matrices respec-

tively along the x and y axis.

Image rotation is also a serie of translation by non entire

values. As we have seen in the paragraph 1.3, we will

use B-spline interpolation to realize these translations.

3 ALGORITHM OF TRANSLATION BY

NON ENTIRE VALUE

) - formula 6

 filterings(k) ∆)direct

(Interpolation

Indirect filteringCk

 - formula 7(Resampling)

s(k-

Figure 1: Principle of the algorithm of translation by

non entire value
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Figure 2: Algorithm of translation by non entire value

4 FILTER DATA CODING

Before we implement the rotation algorithm on a

FPGA's board, we must calculate the number of bits

necessary to code the data and the multiplying coe�-

cients of the �lter. Several methods have been proposed

to estimate the �lter accuracy by determining the calcu-

lation noise variance of the �lter output. However, the

calculation noise variance is not a su�cient information

to code the �lter. Indeed, we need to know the range

of the error we make in function of the wordlength. So

we choose to solve this problem in an original way by

calculating the probability density function of the �lter

output error.

The e�ects of wordlength limitation can be shared in

two separated categories. The roundo� of multiplying

coe�cients has the e�ect of altering the transfer func-

tion. This e�ect is purely deterministic and will not

be studied in this article [6][7]. The second category is

due to the multiplication results roundo� (data round-

o�). In the following section, we will study this e�ect by

considering that each multiplication is the source of uni-

form white noise and we will calculate the probability

density function of �lter output.

4.1 Property

4.1.1 Sum of two stationary processes

Let Y be a stationary process of which the realisations y

are the sum of realisations of two statistically indepen-

dent stationary processes X1 and X2 with probability

densities pe1(x) and pe2(x). So the probability density

ps(y) of Y will be:

ps(y) =

Z +1

�1

pe1(x)pe2(y � x)dx (13)

Then

p(y) = (pe1 � pe2)(y) (14)

4.1.2 Multiplication d'un processus stationnaire par

une constante

Let Y be a stationary process of which the realisations

y = ax are proportional to the realisations x of a sta-

tionary process X with probability density pe(x). So the

probability density function of Y will be ps(y):

ps(y) =
1

jaj
pe(

y

a
) 8a 2 R� (15)

4.2 Range and variance

Let X be a stochastic signal of which we know the prob-

ability density function p(X). We can then determine:

� its range, i.e. the maximal amplitude of the signal

X. It is directly determined from the probabilty den-

sity function p(X) and corresponds to the maximal

value of X for which p(X>Xmax) = 0 .
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� its variance with the following formula:

�2 =

Z +1

�1

X2 p(X) dX (16)

5 PROBABILTY DENSITY CALCULATION

OF DATA ROUNDOFF IN A DIGITAL FIL-

TER

5.1 General case
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Figure 3: IIR Filter

The general expression for a digital �lter with an im-

pulse response g(n) is:

y(n) = x(n) � g(n) =

NX
i=0

aix(n� i) +

MX
i=1

biy(n � i)

(17)

Thus,

y(n) =

 
NX
i=0

aix(n� i)

!
� h(n) (18)

With h(n) the impulse response of the recursive part of

the �lter g.

For an implementation, the wordlength limitation in-

volves necessarily an error �i(n) in each multiplication.

So the expression of the implemented �lter is:

y�(n) =

NX
i=0

aix(n� i) +

MX
i=1

biy
�(n� i) +

N+M+1X
i=0

�i(n)

=

 
NX
i=0

aix(n� i) +

N+M+1X
i=0

�i(n)

!
� h(n) (19)

Then we can deduce the expression of the data round-

o� error:

e(n) = y(n) � y�(n) (20)

=

 
N+M+1X

i=1

�i(n)

!
� h(n) (21)

=

N+M+1X
i=1

+1X
j=0

h(j)�i(n� j) (22)

We can notice that the data roundo� error e(n)

depends, of course, on the data coding in the �lter but

also on the number of multiplication (N+M+1) and on

the impulse response h(n) of the recursive part of the

�lter.

We suppose that the set of realisations �i(n) with

probability density pi(x) are independent. With this

hypothesis, it is possible to apply the relationship (14)

in order to determine the probability density function

pe(x) of the �lter output error:

pe(x) =

N+M+1a
i=1

+1a
j=0

K
j
i (23)

With

K
j
i =

�
pi(

x
h(j)

): 1
jh(j)j

for h(j) 6= 0

�(x) else

And
`

is de�ned as a serie of convolution products:

`N

i=0mi(x) = m0(x) �m1(x) � � � ��mN�1(x) �mN (x)

6 ERROR PROPAGATION IN A FILTER

CHAIN

6.1 parallel �lters
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h

e
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X X X
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1 2

2 2

N

Z / p

Figure 4: Parallel structure

By applying directly the relationship (14), we obtain

the expression of the output error probability density

for parallel �lters:

pe(x) =

Na
i=1

pi(x) (24)
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N 0 1 2 3 4 5 6

emax 3.30468 1.165234 0.82617 0.41308 0.20654 0.10327 0.05163

�2 0.41689 0.10422 0.02605 0.00651 1.628e-3 4.07e-4 1.02e-4

Table 1: Maximal value and variance of translation �lter output error

6.2 cascaded �lters
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Figure 5: Cascaded structure

Let's consider the error �i(n) produced by the ith chain

stage of cacaded digital �lters. The error generated at

the end of the chain is:

e(n) = �i(n) � (

Na
j=i+1

hj(n)) (25)

Where hi(n) is the impulse response of the ith chain

stage of cascaded �lters and N is the number of �lters.

If each stage produces an error �i(n), then we will

have at the end of the �lter chain:

e(n) = �N (n) +

NX
i=1

�i(n) � (

Na
j=i+1

hj(n)) (26)

With HN
i (n) =

`N

j=i+1 hj(n), we obtain:

e(n) = �N (n) +

NX
i=1

�i(n) �H
N
i (n) (27)

= �N (n) +

NX
i=1

+1X
j=0

�i(j):H
N
i (n� j) (28)

If we suppose that the errors produced in each stage

are independent, we can write then:

pe(x) = pN (x) �

Na
i=1

+1a
j=0

G
j
i (29)

With

G
j
i =

(
pi(

x

HN

i
(j)

): 1
jHN

i
(j)j

for HN
i (j) 6= 0

�(x) else

6.3 Error produced by the translation �lter

With the previous formulas, we can calculate the output

error probability density function of the translation

�lter in function of N, the number of bits coding the

data decimal part. With this probability density, it is

possible to determine the variance �2 and the maxi-

mal value emax of the �lter output error in function of N.

We state, as a constraint, that the error due to data

roundo� must not be greater than 0.5 grey scale. Ac-

cording to the table above, we have chosen to code the

data decimal part with 3 bits.
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