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ABSTRACT

Multirate signal processing is one of the best ways to
minimise the computational complexity of Acoustic Echo
Cancellation (AEC). The subband decomposition of the
excitation signal (speech) results in different statistical
properties in each subband. As there are a wide range of
Adaptive Filters (AFs) with different performances and
costs, a challenge is posed in how to match AFs to
subbands so as to maximise performance while minimising
computational cost. This paper discusses a hypothetical
automated benchmarking methodology that addresses some
of the issues raised by the attempt to optimise multirate
AEC architectures as a function of desired performance. In
this context, a performance comparison of the NLMS and
RLS algorithms is conducted.

1. INTRODUCTION

1.1 Overview of the AEC problem

The task of an AEC is to neutralise the disconcerting echo
that a far-end talker experiences of their own speech when
the near-end talker is using a ‘hands-free’ telephone. The
microphone and speaker signals (x[n] and y[n]) are coupled
acoustically via a reverberant enclosure (e.g. a car cabin)
with transfer function H(z). A traversal FIR AF of L taps
performs a system identification of H(z) to yield an error
residual e[n] whose power the AF seeks to minimise: L is
chosen to match the length of the impulse response of H(z).
However, any near-end speech activity should be
transmitted unaffected so that the AEC process is
transparent to both talkers, particularly during double talk.
An AEC algorithm should have fast convergence but,
perhaps more importantly, should also be able to track a
time-varying H(z) (caused by changes in, say, near-end
talker position). [3].

1.2 Multirate AEC

The principal obstacle to economical AEC implementation
is that, typically, values of L>1000 are required in order to
model H(z) accurately resulting in a high computational
load relative to other digital audio operations (e.g. GSM)
that one would expect of a mobile handset. An elegant
solution is to split x[n] and y[n] into N integer-spaced

subbands using critically-sampled multirate analysis
filterbanks. N independent AFs, each of length L/N, are
then deployed to generate N subband error residuals
ei[m]:{1 ≤i≤N} which are recombined by a synthesis
filterbank into e[n] as illustrated in Figure 1 for the simple
case of N=2. If the filterbanks have negligible overheads,
then the computational burden of such a Multirate AEC
(MAEC), compared to the fullband case, is only 1/N.
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Figure 1. An MAEC with N=2 subbands

A high performance MAEC is predicated on well-designed
analysis / synthesis filterbanks. The allpass polyphase IIR
structures developed at Imperial College [5] are oriented
towards specific application in a MAEC. Based upon QMF
principles, they have low computational cost, low delay and
imperceptible phase distortion while possessing sharp
transition widths. Inter-subband aliasing at the synthesis
filterbank output is manifest as narrow peaks coinciding
with the analysis QMF transition regions and is eliminated
by a notch filter at the input to each QMF analysis stage. If
the subband decomposition is relatively coarse (i.e. N≤16),
then the resulting spectral nulls are narrow enough to give
no objective deterioration in speech intelligibility.

1.3 Choice of AF Algorithm

An additional property of a MAEC is that each subband of
the speech signal has unique statistical properties. The



general 1/f spectral envelope of speech implies that the
relative power contribution of each subband to the echo
residual e[n] rolls off with frequency. Related to this
statistical variety is the diversity of AFs available to the
engineer for AEC implementation: a review is provided in
[3]. The most popular algorithm is the Normalised Least-
Mean Squares (NLMS) algorithm which has the lowest
computational cost of order(2L) and is numerically robust
in short wordlength implementations.

At the other end of the spectrum are higher
complexity algorithms such as Fast-RLS (Recursive Least-
Squares) which has fastest convergence but is sensitive to
finite precision effects, requiring computation of order
(10L) in its stabilised form [4]. Between these two poles lie
a variety of AFs which have captured recent attention
which seek to provide RLS performance at NLMS cost, and
include a design variable that controls the tradeoff between
the two: the Fast Newton Traversal Filter (FNTF) is a
popular choice [3]. The important question arises,
therefore, of which AF to use in which subband (and
similarly of how many subbands N to use) leading to the
concept of heterogeneous MAEC architectures and of
robust methods for deriving them [7].

2. A BENCHMARKING STRATEGY

A conceptual tool that would be of advantage to an AEC
designer would be a graph of AEC performance versus
computational complexity. It would represent (i) the
maximum achievable performance for a specified
computational cost and by symmetry, (ii) the minimum
computation required to achieve a specified performance
target. AEC performance is quantified succinctly in the
traditional metric of Echo Return Loss Enhancement
(ERLE) expressed in eqn. (1). Computational cost for an
FIR AF is usually measured in terms of an integer multiple
of L, but an additional factor is the precision (wordlength)
necessary for stable operation: a benchmark combining
both is the ALU bandwidth required in Mbytes / second.
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The first stage towards automated benchmarking is to select
a subset of C candidate AFs deemed suitable for AEC
implementation. Next, a limit must be imposed on N to
limit QMF depth before artefacts of the subband
decomposition become perceptually apparent (i.e. nulls
caused by notch filters): max(N)=16 is considered
appropriate. Therefore N∈{1,2,4,8,16}. To provide a
complete search space for the optimisation problem, the
performance and computational cost of each architectural
permutation of AFs at each value of N must then be
benchmarked by extensive simulation. However, the
number of permutations at a particular QMF depth is CN

implying an intractable amount of simulation at even
moderate values of C and N. A simpler approach is to
exploit the mutual orthogonality of subbands and
benchmark each independently, in parallel, during the
simulation of a homogeneous MAEC composed of N

identical AFs. The total number of simulation runs thus
required is a tractable 2C(max(N)-1). The fullband
benchmark for any architectural permutation may then be
generated theoretically by a simple look-up and
accumulation of the appropriate subband benchmarks and
computational costs based on the additive power property
expressed in eqn. (2).
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At our disposal is a large database (FREETEL) numbering
R=463 synchronous microphone / speaker (SM) pairs of
16-bit 8kHz sample rate recordings taken in a variety of
real acoustic environments with ambient noise [2]. Male
and female talkers enunciate phonetically balanced
utterances in one of three languages (English, French and
Spanish). It is a valuable resource for off-line AEC
benchmarking since it permits the compilation of large-
scale ensemble statistics. With too small a database,
benchmarks risk becoming data-specific and inapplicable to
the general case. For each simulation of a candidate AF
with an SM pair, a set of N cumulative error and
microphone powers permit a mean ERLE to be computed
for each subband. Mean ERLE is a useable metric since it
encapsulates both AF convergence speed and
misadjustment error in a single meaningful value. The next
problem is how to integrate the results from R SM pairs
into a single value. Mean ERLE histograms for each
subband yield a consistent pattern manifest as a normal-like
distribution. The median value of this set is chosen as the
final ensemble-averaged value. This benchmark, denoted B,
is expressed in eqn. (3) where the i:{1≤i≤N}and j:{1≤j≤R}
respectively index individual subbands and SM pairs in the
FREETEL database.
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Assuming a complete set of benchmarks, MAEC
architectural optimisation begins with the specification of a
desired mean fullband ERLE, denoted D (in dB) which is,
explicitly, a wide-sense interpretation of eqn. (1) for single-
talk. Next, it is required that the fullband error residual e[n]
should be as ‘white’ as possible. The justification is that (i)
the echo is ‘smeared’ across frequency making it
perceptually less annoying, particularly with a large
number of subbands (N) and (ii) it is intuitively attractive
since higher-performance AFs are favoured for subbands
containing the bulk of the echo power. Prior to AEC, the
expected power contribution of each subband yi[m] to the
uncancelled fullband echo y[n], denoted P(i,N) is expressed
by eqn. (4) using, for consistency, the same approach as in
eqn. (3). After AEC, the desired power ratio of each
subband echo residual ei[m] to y[n], denoted Q(N), is given
in eqn. (5) and is a function of D and the equal power
division between N subbands for a white signal. Therefore
the target ERLE for each subband, denoted T(i,N), is given
by eqn. (6). Optimisation thus consists of (on a subband-



by-subband basis) identifying the set of AFs which satisfy
eqn. (7) and then choosing the one with lowest
computational cost.
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3. EXPERIMENTAL RESULTS

3.1 Method

A single-talk subset (R=128) of FREETEL was chosen
(omitting the complexities of double-talk detection) which
used the same acoustic front-end and room environment
requiring an AF of approximately L=500 taps for accurate
modelling. Five individual talkers are featured. For the
purposes of benchmarking, an over-determined fullband
AF of length L=1024 was used to minimise the risk of
subband AFs becoming under-determined due to impulse
response length variation between subbands. The NLMS
stepsize parameter µ was fixed, but tried at three values of
µ∈{0.1,0.3,1.0} to take into account the different
properties of subbands: a variable stepsize is ideal, but the
chosen range was found to be satisfactory in practice. Eqn.
(3) was applied for each value of µ and the maximum
benchmark for each subband was recorded.

For the RLS simulations, the 8L Fast-RLS [4]
algorithm was implemented in double-precision. Instability
was not encountered as the run-length of each SM pair was
finite, typically of the order of 105 samples. The forgetting
factor λ was varied over the range λ∈{1, 0.99999, 0.99997,
…0.99, 0.97} in each subband in order to identify the
optimum time constant. It is a well-known fact that for a
non-stationary H(z), NLMS and RLS often have a
comparable tracking performance governed by the
‘memory’ effect of, respectively, µ and λ, often leading to a
preference for NLMS [2][3]. An alternative to covariance
domain algorithms such as RLS, which involve the
numerically ill-conditioned step of ‘squaring’ and inverting
the data matrix are data-domain algorithms using QR
factorisation which are less sensitive to roundoff error [4].
However, given the luxury of off-line double-precision
arithmetic, it was found that the results of Fast-QR [4] were
almost identical to Fast-RLS. This is because that both are
different ways of rewriting the same least-squares problem
involving λ.

Alongside NLMS and RLS, a modified NLMS-
type order(2L) algorithm developed at Loughborough was
benchmarked in order to evaluate its performance [6]. It
shares the premise made by the FNTF [3] in assuming a
low-order autoregressive excitation model but has an
implementation involving a simple adaptive
preconditioning filter to NLMS: a similar structure has also
been proposed in [1] with differing normalisation.

3.2 Analysis of the Results

The benchmarks for the three AF methods are plotted in
Figure 2 for each subband i up to a maximum of N=16. At
N=1 (i.e. fullband) both Fast-RLS and the modified NLMS
exhibit a performance improvement of +2.5dB over
standard NLMS. The FREETEL subset has a low ambient
S/N ratio of the order of 15-20dB and explains the small
improvement margin which might be expected to be larger.
However, the modified NLMS result is comparable to Fast-
RLS despite their large difference in computational
complexity.

As the subband decomposition becomes
progressively deeper, a clear difference emerges in that
Fast-RLS gives superior performance to NLMS methods in
the lower 30%-40% of the spectrum. However, in the upper
spectrum, the three methods are roughly comparable. The
reason is that speech has the highest signal power in the
lower subbands and thus the ambient S/N ratio is much
better; a property that can be exploited by fast-converging
RLS methods. In the upper subbands, near-end additive
noise leads to considerable AF misadjustment.

In order to be able to combine subband results into
a fullband version, P(i,N), the power contribution of each
subband to the fullband echo must be estimated. P(i,N) is
plotted in Figure 3 and shows some interesting ensemble
characteristics as N→16. At N=16, maximum P(i,N) occurs
in the 3rd subband spanning 500-750Hz and, in constrast,
there is a minimum P(i,N) in the region of the 8th and 9th

subband spanning 1750-2250Hz. The former is
characteristic of the speech spectrum, but the latter
phenomenon is partly a filterbank artefact [5].

3.3 Interpreting the Results

N 1 2 4 8 16
Best ERLE (dB) 12.7 12.4 13.5 13.4 12.4

Table 1. Estimated Fullband ERLEs for Optimal MAECs

Specifying our desired ERLE at, say, D=15dB, and
applying the benchmarking strategy of section 2, we obtain
the results of Table 1. The best option (in terms of D) is
N=4: there is a qualitative recommendation of Fast-RLS for
the lowest frequency subband and of NLMS-type methods
for the higher frequency ones. These results are the best
achievable for the chosen AF set and FREETEL subset.

4. CONCLUSIONS

The benchmarking strategy is formulaic and should not be
applied too rigidly to a complex engineering problem like
AEC. However, as we have seen, it brings to light in a
quantitative fashion the factors that can bias the choice for
one AF over another in individual subbands. For instance,
the advantage of RLS over NLMS in low frequency
subbands is demonstrated.
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Figures 2 and 3. Benchmark Results


