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ABSTRACT

The well-known histogram equalization algorithm is not
reversible, namely, given an equalized image and its ini-
tial histogram, the original image cannot be recovered.
The paper proposes a solution to histogram inversion
problem. An ordering on images, closely related to the
human perception of brightness, is defined. The pro-
posed ordering refines the normal ordering on graylevels
up to a strict ordering. Based on the assumption that
the ordering is conserved by histogram equalization al-
gorithm, the inverse problem is further solved. The ex-
perimental results show a very good recovery of the orig-
inal.

1 INTRODUCTION

Histogram equalization is a well-known image enhance-
ment technique, {?]-[?], whose purpose is to transform
an image to have an almost uniform histogram. The
equalized image has a better appearance (looks more
"equilibrated”), its contrast is improved and image de-
tails become visible.

Histogram equalization algorithm merges levels of
gray and spreads the new values as uniform as pos-
sible over the graylevel scale. The values of the new
graylevels are computed by a very simple procedure
based on the histogram of the original image. Thus, if
H = [ho, h1,-..,hr-1] represents the histogram of the

original image, the new graylevels, [;, ¢ = 0,...,L =1,
are: )
Zl':() h]
L= [(L )= (1)
ijo h;

where |z] is the greatest integer less than or equal to .
The histogram equalization is merely a pointwise trans-
form on the graylevel range, T : [0,L — 1] = [0,L — 1],
ie., l; = T(z), where 7 and [; are the initial and final
graylevel, respectively. Due to truncation in equation
(7?7}, T is not a mapping onto and therefore, the in-
verse transform 7! does not exist. In other words,
the algorithm is not reversible; once the image has been
equalized, one cannot recover the original.

The paper addresses the problem of original image re-
covery after histogram equalization. The basic idea is
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to define a strict ordering relation on images which is
assumed to be invariant to histogram equalization algo-
rithm. The original image is further recovered from the
equalized one by using the initial histogram. The out-
line of the paper is as follows. In section 2, the proposed
ordering relation is defined. Details on implementation
and some quantitative evaluations are discussed in sec-
tion 3. The problem of image recovery after equalization
is presented in section 4. Experimental results are pro-
vided in section 5. Finally, in section 6, conclusions are
drawn and the results of our research are summarized.

2 ORDERING: PRINCIPLES

In the sequel, we refer to discrete images of size N x N
having L graylevels, where N?> >> L, i.e., the num-
ber of pixels is considerably larger than the number
of graylevels. This is the usual case of images of size
512 x 512 or 256 x 256 having 256 graylevels. We intend
to define a strict ordering relation which not only refines
the usual ordering on graylevels but is also consistent
with the human perception of brightness. Therefore we
have to define a procedure such as pixels with similar
levels of gray be differentiated. The proposed ordering
takes into account the context of each pixel. Such an
idea. is not new; for instance, in histogram equalization
[?], the local mean was considered to split between pix-
els having the same graylevel. While local mean append
some more information, this is not enough for a complete
discrimination among pixels. Our approach elaborates
on this idea. Instead of a simple mean around each pixel,
several mean-values are extracted at different scales and
are further used for pixels ordering.

Let f(z,y) : [1,N] x [1, N] be a discrete image. Let
k be a fixed integer and let W;, i =1,...,k be a family
of closed neighborhoods on f such as:

WicWs,C...C Wy (2)

For any (z,y), let m;(z,y) be the mean value of the gray
levels of f on the W; neighborhood of (z,y):

mi(flﬁ,y) — Z(w—i,y—j)ellivl:.vfl(lx -1,y — ]) (3)




where ||W;|| is the size (cardinal) of ||W;||. We assume
the image is expanded with zero value pixels in order to
accommodate W}, on its borders.

Let M(z,y) be the k-tuple of mean-values on W;, ¢ =
1,...,k:

M(m,y) = (ml(a:,y),mg(x,y),...,mg(m,y)) (4)

Let us denote by M the set of M(z,y) for all the
(z,y) C [1,N] x [1,N]. Let us further consider the
lexicographic ordering, denoted by <, on M. Accord-
ing to the lexicographic ordering, M(a,b) < M(c,d)
if either mj(a,b) < my(c,d) or there is a certain j,
1 < j < k such as m;(a,b) = m;(e,d), i =1,...,7, and
mjt+1(a,b) < mjp1(c,d). The lexicographic ordering in-
duces a complete ordering on M. Since there is a one to
one mapping, M(z,y) — (z,y), between M and f, the
similar ordering is induced on f, too. We shall therefore
write f(xhyl) =< f(:l"2:y2) when M(wlayl) = M(.’L’2,y2)

Let W, be reduced at pixel size. We observe that for
k = 1 one recovers the usual ordering on f. Let k be
greater than 1, e.g., k = 2. The mean values over W5 do
count in the induced ordering and thus, one can discrim-
inate between certain pixels having the same graylevel.
The greater k, the finer the ordering.

Let us suppose that for a certain k and a family of W;
one obtains a strict ordering on M:

M($1,y1)<M($2,y2)<--"<M($N2ay1v2) (5)

Due to the mapping between M and f, the same strict
ordering appears on the corresponding image:

flzy,yn) < f@a,y2) < ... < f(zne2,ynz) (6)

The proposed ordering is consistent with the usual
ordering on f. Thus, the strict classical ordering is con-
served by the new one:

fz1,1) < fz2,92) = flz,m) < f(@2,92) (1)

Besides, the new ordering refines the classical one, i.e.,
equal pixels by the classical ordering become strictly
ordered. Thus, the converse of (?7) appears as:

f(@1, ) < f(z2,42) = fl@,m) < flze,y2)  (8)

The proposed ordering relation corresponds to the in-
tuitive idea of brightness; at the same graylevel, a pixel
appears brighter than another, when its local mean is
brighter than the local mean of the other one. Be-
sides, if k is large enough, for any two pixels, (x1,y1)
and (z3,y2) one gets either M(z1,y1) < M(z2,y2) or
M (z3,y2) < M(z1,y1). However, such an ordering can-
not be possible for any image. If we consider a constant
image, f(z,y) = a, regardless k and Wj, equation (?7)
fails (except for some pixels near the borders). There-
fore, we assume images we deal with have a good res-
olution, namely ”enough” graylevels. Also, in order to

Table 1: Ordering with respect to k.

[ k | Separability [%] | Max-length | Mean-length
1| 0.082 2,742 1,225
2| 9.17 139 10.9
3 |6244 26 1.6
4 | 96.85 6 1.0325
5 | 99.87 2 1.00013
6 | 99.98 2 1.00002

avoid large uniform areas, we assume natural (real) im-
ages. Furthermore, since k and the size of W; should be
connected, in a certain sense, to the human perception
on brightness, we should consider moderate values for k
as well as for the size of W. Otherwise stated, a certain
correlation being assumed among image pixels, it does
not make sense to deal with pixels far apart from each
others. On the other hand, the requirement to have a
strict ordering among the entire image could be relaxed,
i.e., we accept a strict ordering almost everywhere. This
means that, we allow some equalities in equation (?7),
meantime keeping k as small as possible

3 ORDERING: RESULTS

The previous section states an ambitious goal, namely
to induce a strict ordering almost everywhere and con-
cludes with some comments on images and on the di-
mension of the windows family. In order to give some
meaning to the rather ambiguous figures of merit ”"mod-
erate values for k” and ”“enough graylevels” we define
first a family W; and afterwards we evaluate the induced
ordering with respect to k.

3.1 W; Family
The only constraint imposed on W; family is given by
equation (77) which imposes a strict inclusion relation
for W; family. Meantime, some geometrical symmetry is
assumed. Therefore, starting with a pixel size element,
we designed a symmetric family where the increase from
successive elements was kept to a minimum.

The description of the first 6 elements in the family
follows:

e W, - pixel size (1 x 1);

e W, - classical V4 unit ball;

W3 - classical V3 unit ball (3 x 3);

Wy - V4 for radius 2;

Ws - the 5 x 5 window without corner pixels;

[ ]

W - Vi for radius 2 (the full 5 x 5 window);
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Figure 1: Original image (up) and the induced ordering
(down).

Obviously, the development of the family can continue,
on the same idea, with Wy, and so on.

3.2 Quantitative Aspects

The evaluation of ordering regards how the proposed
ordering applied on real images satisfies (77). A strict
ordering means that all inequalities in (?7) are strict
inequalities, i.e., for a N x N image, we should have
N? distinct pixels. Since the equation holds only ap-
proximately, we expect to find groups of ”equal” pixels
in the string. We are interested to evaluate how often
such groups appears and how large they are. A global
measure of the quality to be evaluated is the percentage
of equal pixels, i.e., nonseparable, in the string. The
evaluation is performed with respect to the size of W;
family, being meant to guide the choice of k.

In Table 1 we present the results of our evaluation
on the test image lena of size 512 x 512. Besides the
percentage of separable pixels and the maximum length
of a group of equal pixels we display also the medium
length of the group of equal pixels (in the ideal case, 1).
The first row of the table recovers the usual ordering
on images; there are 215 graylevels which hardly can
separate 262,144 pixels. As k increases, the quality of
the order increases as well. Thus, for k > 4 the pixels
are almost strictly ordered. For example, for k£ = 5, the
ordered string contains only 351 pairs of nonseparable
pixels and, for k = 6, only 54 pairs are present.

We found quite similar results in all our tests (man-
drill baboon, sailboat, cameraman, tree, peppers, etc.).
Therefore, the information present in a 5 x 5 window
can be used to induce by the procedure we described an
almost strict ordering on real images.

55 59 71 74 74 89 80
56 61 65 71 71 73 74
59 67 74 73 73 78 80
60 68 68 70 83 78 78
61 64 66 70 73 86 80
58 60 67 70 67 70 74
63 65 66 73 82 74 84
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Figure 2: Equalized image (up) and the induced order-
ing (down).

4 THE INVERSE ALGORITHM

Let us suppose that the image f, having original his-
togram H, has been equalized. The equalized image is:

fr=T) 9)

The inverse algorithm is based on the assumption that
the proposed ordering is conserved by the histogram
equalization algorithm. This means that:

f@,m) < floz,y2) = [ (z,y) < fr(z2,y2) (10)

Ordering f* one gets a string of pixels
fr@,yt) < fr@sus) <. < fr(zheyne) (1)

If the ordering is invariant to histogram equalization,
the strings in (?7) and (?7) should be identical. This
hypothesis states that there is no need for re-indexing
in (77), ie., for each ¢, (z},y}) = (z:,¥:), and conse-
quently:

Fxi,y) < A (@2,y2) < ... < fHzn2,yn2)  (12)

Furthermore, if H = [ho,h1,...,hr-1] is the original
histogram of f, the leftmost group of hg pixels in (77)
have the graylevel 0, the next group of h; pixels have
the graylevel 1, and so on.

Due to the equivalence of the ordered strings (?7)
and (?7) the invertion algorithm immediately follows:
for each j, 7 =0,...,L — 1 and starting with j = 0, we
assign to the group of h; successive pixels from left to
right in (??) the corresponding graylevel in the original
histogram. After the final pixel in (??), (zn2,yn2), has
been assigned to its corresponding graylevel, the original
image has been recovered.
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Figure 3: Graylevel variation before (left) and after
(right) histogram equalization.

Comment. The recovered image has exactly the orig-
inal histogram. This makes the procedure very suitable
for exact histogram specification tasks, including exact
histogram equalization.

4.1 Order Conservation

The algorithm would perform exactly if the order should
be strictly conserved by histogram equalization. Obvi-
ously a linear transform on f conserves ordering. His-
togram equalization is a nonlinear transform which,
however, does not destroy natural ordering. For exam-
ple, if f(z1,y1) < f(z2,y2) one should have f*(z1,y1) <
f*(z2,92) and never f*(z1,y1) > f*(x2,¥2). On the
other hand, due to the intrinsic nonliniarity, there is no
proportionality between differences of graylevels before
and after histogram equalization. This can, in certain
conditions, violate the conservation of the proposed or-
dering.

Such an example is given next, namely for a 7 x 7
block of a real image. In Fig.1 and Fig. 2 are shown the
original - equalized block, respectively, together with the
corresponding induced ordering. As it can be seen, an
error appears for the positions 30 and 31, namely for
the pixels (3,5) and (5,5), respectively. For the orig-
inal image f(3,5) < f(5,5) (m1(3,5) = m(5,5) and
m2(3,5) > ma(5,5)). For the equalized one, the or-
der is reversed, i.e., f*(5,5) < f*(3,5), since m1(3,5) =
my(5,5) but ms(3,5) < mz(5,5). This is due to the non-
linear assignment of graylevels by the histogram equal-
ization procedure. To make things more visible, Fig. 3
presents only the graylevel variation over Wy with re-
spect to the central pixels (3,5) and (5,5) before and
after histogram equalization, i.e., the variation with re-
spect to graylevel 96 (original image) and 73 (equalized
image), respectively.

5 EXPERIMENTAL RESULTS

Since the hypothesis of order conservation does not com-
pletely hold, we expect that a certain reconstruction er-
ror does exists. In order to evaluate the results, we
have computed the Peak-to-peak Signal to Noise Ratio
(PSNR) of the reconstructed images. The experimental
results for some well-known test images are presented
in Table 2. As it can be seen, the quality of the recon-
struction is very good.

Table 2: Image recovery, experimental results.

| Image | Size | PSNR [dB]
peppers | 512 x 512 | 60.35

girl 256 x 256 | 58.52
lena 512 x 512 | 58.45
tree 256 x 256 | 57.60

sailboat | 512 x 512 | 56.60

After the first restoration, we noticed that the order-
ing induced on the reconstructed image becomes stable
to a further application of the histogram equalization
algorithm and the inversion becomes error free.

6 CONCLUSIONS

A method for recovering images after histogram equal-
ization has been presented. An ordering relation, strict
almost everywhere, is defined first on graylevel images.
The ordering is supposed to be invariant to histogram
equalization algorithm and the inversion take place by
ordering the equalized image and considering its orig-
inal histogram. The experimental results obtained so
far show a very good recovery of the original, namely
PSNR’s of 50 to 60 dB.

The resulted image has exactly the original histogram.
The inverse problem we stated can be seen as an ex-
act histogram specification plus a restoration problem.
Another interesting aspect of our approach is the fact
that the recovered image and the equalized one form
an invariant pair of images to the classical histogram
equalization algorithm and to the inverse algorithm we
proposed.
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